Cardiovascular Physiology and the Peripheral Vascular System

September 14th, 2021 Dre'Von Dobson

Content Contributions: Dr. Chris Mack, Dr. Susan Hadler, UNC Pathology Dept.

Learning Objectives

How does the cardiovascular system normally function?

- 1. Learn the components of blood
- 2. Learn the architecture of the blood vessels
- 3. Learn how the heart distributes blood to the rest of the body

- Plasma
- Red Blood Cells (Erythrocytes)
- White Blood Cells (Leukocytes)
- Platelets

- Plasma the fluid matrix that contains that blood components
- Plasma contains:
 - Clotting Factors mediate hemostasis and thrombosis
 - Serum contains other proteins, antibodies, hormones, etc.

https://www.dreamstime.com/stock-photo-blood-plasma-formed-elements-test-tube-composition-whole-hematocrit-red-cells-erythrocytes-white-cells-image37786150

Red Blood Cells (Erythrocytes)

- No nucleus
- Carry oxygen to the body and remove carbon dioxide
- Too few red blood cells results in anemias
 - Iron-deficiency anemia
 - Sickle cell anemia
 - Hemolytic anemia
 - Fanconi anemia

Red blood cell (erythrocyte)

https://webpath.med.utah.edu/HISTHTML/NORMAL/NORM023.html

White Blood Cells (Leukocytes)

- Basophils, Neutrophils, Eosinophils, Monocytes
- Lymphocytes (B-cells and T-cells)
- Primary role is to protect the body from infection and aid in inflammation

https://webpath.med.utah.edu/HISTHTML/NORMAL/NORM023.html

• Platelets

- Very small anucleate cells
- Help with hemostasis and thrombosis
- Help with wound healing

https://webpath.med.utah.edu/HISTHTML/NORMAL/NORM021.html

Vasculature: Arteries vs Veins

- Arteries send oxygen-rich blood to the body from the heart
- Veins send oxygen-poor blood from the body to the heart

	ARTERIES		ARTERIOLES	CAPILLARIES	VENULES	VEINS	
	Aorta		ON	and the second s	one-way valves	C.	Venae cavae
internal diameter	2.5 cm	0.4 cm	30 µm	5µm	70 µm	0.5 cm	3 cm
wall thickness	2 mm	1 mm	20 µm	1 µm	2 μm	0.5 mm	1.5 mm
number	1	160	5 X 10 ⁷	10 ¹⁰	10 ⁸	200	2
total cross- sectional area	4.5 cm ²	20 cm ²	400 cm ²	4500 cm ²	4000 cm ²	40 cm ²	18 cm ²

Figure 7-1 Structural characteristics of the peripheral vascular system.

Sympathetic Nerve Stimulation

- Baroreceptors sense changes in blood pressure
 - They then send signals via the sympathetic nerves that either constrict vessels to increase pressure or relax vessels to decrease pressure

Arterial Baroreceptors

Figure 8-5 Primary influences on arterioles and veins. NE, norepinephrine; α , alpha adrenergic receptor, P, pressure.

Figure 7-4 Flow velocities, blood volumes, blood pressures, and vascular resistances in the peripheral vasculature from aorta to right atrium.

The Heart

https://www.youtube.com/watch?v=GMBSU-2GK3E

National Geographic Video

THE UNIVERSITY of NORTH CAROLIN at CHAPEL HILL

How the Blood Travels

- Blood that's pumped out of the heart travels through the arteries to the organs and the rest of the body
- Oxygen-rich blood is delivered through the capillaries in exchange for the oxygen-poor blood
- The oxygen-poor blood then travels to the lungs through the veins where it is re-oxygenated before it returns to the heart

Figure 1-2 Cardiovascular circuitry indicating the percentage distribution of cardiac output to various organ systems in a resting individual.

Cardiomyocytes

- Cardiomyocytes
 - The primary cellular unit of the heart
 - Responsible for the heart contracting
 - The contraction is governed by a rhythmic opening and closing of calcium ion channels and sodium potassium pumps
 - These pumps create a gradient of electricity that causes the cardiomyocytes to pull on each other in a single direction (this causes the heart to contract or "pump")
 - Disrupting this electrical gradient results in arrhythmias

https://www.humpath.com/spip.php?article3277

Electrical properties of cardiac cells

 Electrical signals are sent from the SA node (the pacemaker of the heart)

Opening/Closing channels changes potential

Channels are responsive to signals (depolarization, PT modification, etc)

Excitation/Contraction Coupling

Cardiac electrical conduction

- EKGs are used as a diagnostic tool by measuring electrical activity and heart rate
 - P wave = atrial depolarization
 - QRS complex = ventricular depolarization
 - T wave = ventricular repolarization
- Normal heart rate = 60 100 bpm (82 bpm)

Figure 3-2 Time course of membrane potential and ion permeability changes that occur during "fast response" (left) and "slow response" (right) action potentials.

Refractory period helps prevent arrhythmia

Cardiovascular Physiology Terms

 Cardiac Output (CO) - the volume of blood being pumped by heart per unit of time

- CO = HR x SV

- Venous Return (VR) flow of the blood back to the heart
 VR = CVP RAP
- Central Venous Pressure (CVP) pressure in the vena cava
- Stroke Volume volume of blood pumped by left-ventricle per beat
- Sympathetic Activity increase in vasoconstriction and muscular contraction that increase stroke volume

Figure 11-3 Cardiovascular mechanisms involved when changing from a recumbent to standing position.

Body position, gravity, and muscle pump

Mormon and Heller, 1997

Relationship between venous return and CO

Central venous pressure is always inherently driven to the equilibrium value that makes CO=VR

of NORTH C

Cardiovascular Pathology Examples

- Cardiac Hypertrophy
 - Physiological increased exercise, bigger and stronger heart
 - Pathological pumping against increased pressure constantly, bigger and weaker heart

Cardiovascular Pathology Examples

- Atherosclerosis fatty deposits line the vessel wall and weaken/obstruct it
- Thrombosis blood clots form that can obstruct vessels
- Heart Failure cardiac output falls to low to pump blood through the body
- Hypertension High blood pressure weakens the heart and vessels
- Aneurysms Vessel rupture
- Arrythmias
 - Tachycardia abnormal heart beat that is too fast (resting \geq 100 bpm)
 - Bradycardia abnormal heart beat that is too slow (resting \geq 60 bpm)
 - Flutter regular rapid circuits in the atrium; can lead to atrial fibrillation
 - Fibrillation irregular heart rhythm that causes the atria to contract irregularly
 - Heart Block -a delay or complete block of electric impulse from the SA node (pacemaker)
- Heart Attack
- Stroke

https://www.doctorshealthpress.com/heart-health-articles/arrhythmia-causes-types-symptomstreatments/#:~:text=Types%20of%20Arrhythmia%201%20Tachycardia.%20Tachycardia%20is%20a,circuits%20in%20the%20atrium.%20...%20More%20items...%20

Questions?

References

- 1. Cardiovascular Physiology, David E. Mohrman and Lois Jane Heller 1997
- 2. <u>https://www.doctorshealthpress.com/heart-health-articles/arrhythmia-causes-types-symptoms-treatments/#:~:text=Types%20of%20Arrhythmia%201%20Tachycardia.%20Tachycardia%20is%20a,circuits%20in%20the%20atrium.%20...%20 More%20items...%20</u>
- 3. https://www.humpath.com/spip.php?article3277
- 4. <u>https://www.dreamstime.com/stock-photo-blood-plasma-formed-elements-test-tube-composition-whole-hematocrit-red-cells-erythrocytes-white-cells-image37786150</u>
- 5. https://webpath.med.utah.edu
- 6. <u>https://www.youtube.com/watch?v=GMBSU-2GK3E</u>

