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What Are We Going to Cover Today?

* Normal lung anatomy and histology

 Evaluating lung function

» Pathological changes to the lung

» Using animal models to study respiratory disease
 Vaccine development
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What Are We Going to Cover Today?

* Normal lung anatomy and histology

« Evaluating lung function

» Pathological changes to the lung

» Using animal models to study respiratory disease
 Vaccine development



Pulmonary Function Tests

* Spirometry — measures the rate of air flow and estimates lung size
* Plethysmography — measures lung volume changes

* Lung Diffusion Capacity — assesses how well oxygen gets into
nlood

* Pulse Oximetry — estimates oxygen levels in blood
» Arterial Blood Gas — directly measures levels of gases in blood

* Fractional Exhaled Nitric Oxide — measures how much nitric oxide
IS In exhaled air




Modeling Pulmonary Function Tests

Spirometry Plethysmography Pulse Oimetry
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Asthma

* Clinical:
 Airway hyper-responsiveness
* Triggers: antigens, exercise, drugs,
Infections, stress

 Acute, usually reversible diffuse bronchial
narrowing

 Wheezing, dyspnea

 Pathology:

« Edema, smooth muscle thickening,
basement membrane thickening, mucous
cell hyperplasia, increased submucosal
eosinophils, thickened intralumenal
mucus
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Aspiration NN A
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Emphysema

e Clinical:
 Increased elastase activity

 Cigarette smoking
* Inherited al-antitrypsin deficiency

 Pathology:

 Dilation of distal airspaces with septal
destruction

THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL

=




Lung Infections

* Types of inflammatory response
* Bacterial pneumonia

* Viral

* Mycobacteria

* Fungal



Types of Inflammatory Responses

* Neutrophils
« Usually bacterial
« Usually in alveoli

* Lymphocytes
« Usually viral
e Usually in interstitium / septae

 Granulomatous inflammation
« Usually mycobacterial or fungal
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Bacterial Pneumonia

* Most bacteria are normal inhabitants of
the nasopharynx or oropharynx

* Reach alveoli by
e Aspiration (most)
* Inhalation
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* Pneumococcal pneumonia I Y Foy
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* Streptococcus pneumoniae

* Pulmonary edema, bacterial proliferation,
neutrophils
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Viral Pneumonia

* Immune compromised
« HIV, organ transplants

* Infants may get CMV
* Lymphocytes in the interstitium

* Distinct cytologic inclusions for
some viral infections
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Tuberculosis

Mycobacterium tuberculosis

Infection by inhalation of aerosolized
droplets containing organisms

* Caseous granulomatous inflammation
results

90% of primary exposures asymptomatic
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Fungal Pneumonia

e Fungi are ubiquitous in soil and air

* Most exposure fails to produce infection

* Body temperature arrests growth

* Phagocytosis by neutrophils and
macrophages

» Risks: chemo, steroids, T cell deficiencies

e Usually granulomatous inflammation

* Silver stains demonstrate organisms
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* Normal lung anatomy and histology

 Evaluating lung function

» Pathological changes to the lung

* Using animal models to study respiratory disease
 Vaccine development



COVID-19 In Humans

* Flu-like illness: fever, chills,

fatigue, cough, congestion,
shortness of breath, sore throat, ; | o
body aches, headache, diarrhea | ’;‘f Sutcan
5"4 ;K-pezlnarcell
e Loss of taste or smell
* Severe disease manifestations: .
pneumonia, respiratory failure, =S Pl filed intersttom

sepsis, multi-organ failure, N & A . T cacl o
cardiomyopathy, acute kidney | |

injury, stroke

Neutrophil

Protein and
cellular debris

* ‘»//,."/‘I
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gas exchange
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Vascular pattern Epithelial pattern

Fibrotic pattern

Lung Pathology in COVID-19 Patients

e Atypia and detachment of
type Il pneumocytes

* Hyaline membranes

* Interstitial inflammation
 Epithelial denudation

* Hyaline thrombi

* Fibrinous pneumonia

* Edema

* Intra-alveolar fibroelastosis
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Hamsters as an Animal Model for
SARS-CoV-2 Infection

* Clinical Signs: Nasal Epithelium — 2 DPI
* Fever

* Dyspnea
* Weight loss

* Tissue Tropism:
* Upper and lower airways
* Nasal and bronchiolar epithelium

* Potential Applications:
* Pathogenesis
* Transmission dynamics
* Vaccines and therapeutics
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Ferrets as an Animal Model for
SARS-CoV-2 Infection

* Clinical Signs:
* Fever
* Appetite loss

* Tissue Tropism:
* Upper respiratory tract
* Gl tract

* Potential Applications:
* Vaccines and anti-virals
* Transmission dynamics
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SARS-CoV-2 Infection of Mink
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Macaques as an Animal Model for
SARS-CoV-2 Infection

* Clinical Signs:
* Changes to respiratory pattern
* Fever
* Weight loss

* Tissue Tropism:
* Lung
* Lymphoid Tissue
* Gl Tract
* Potential Applications:
e Pathogenesis

* Vaccines and therapeutics
* Chronic effects
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Advantages to Using Mice

* Similar anatomy, physiology, and genetics to humans
* Relatively cost effective

* Genetically modifiable

* Small and easy to house

* Short gestation time and lifespan

* Quick maturation

* Good array of reagents for research



Barriers to Using Mice to Study COVID-19

Human coronavirus spike protein
PDB ID: 5108
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RNA viral genome
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Mouse Model Approaches

* Transgenic Mice

*Viral Vector-Mediated Sensitization
* Humanized Mice

* Mouse-Adapted SARS-CoV-2 Strains



K18-hACE2 Mice

Transgenic mice with human ACE2
constitutively expressed in epithelial cells

Can use human clinical SARS-CoV-2
isolates

Clinical Signs: :
* Weight loss =
* Hunched posture o
* Mortality o
>
Tissue Tropism: S |g
* Lung < N
* Brain B
e Systemic replication %

Potential Applications:
* Pathogenesis
* Vaccines and therapeUtiCS Winkler, et al, Nature Immnol, 2020



Ad5-hACE2 Mice

Exogenous delivery of human ACE2 with a

replication-deficient adenovirus under

control of a CMV promoter

Can use human clinical SARS-CoV-2 isolates

Clinical Signs:
* Weight loss
* Hunched posture

Tissue Tropism:

* Lung

Potential Applications:
* Pathogenesis
* Vaccines and therapeutics

AdS5-empty
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Humanized Mice

Subcutaneous implantation of human
lung tissue into the backs of
immunodeficient mice

Can use human clinical SARS-CoV-2
isolates

Clinical Signs:

* None? B SRS
Tissue Tropism: e Sk

* Human Lung Implant

Potential Applications:
* Viral Replication Kinetics
* Lung Pathology
* Human Immune Response
* Prophylactics and Therapeutics

Implantation of
human lung tissue

mouse

Wahl and Gralinski, et al, Nature, 2021



Mouse Adaptation of SARS-CoV-2

Human ACE2

Original
SARS-CoV-2 a

Q498Y/P499T
SARS-CoV-2-MA
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Original
SARS-CoV-2

Q498Y/P499T - 7
SARS-Cov-z-y o
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Mouse Adaptation of SARS-CoV-2

Pathogenic
SARS-CoV-MA10

Mutation Gene Coding Change

C9438U nsp4 T2851
A11847G nsp7 KZR
A12159G nsp8 E23G
C2303%A Spike Q493K
uz2r221C ORF& F7s

Leist et al, Cell 2020
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Lung Pathology Scoring

ATS Acute Lung Injury Score (2011 Matute-Bello et al.)

M.E. Schmidt DAD Score (Schmidt et al. 2018)

Neutrophils in

Neutrophils in

Proteinaceous

Alveolar septal

1 |Absence of cellular sloughing and necrosis

2 |Uncommon solitary cell sloughing and necrosis (1-2 spots)

3 |Multifocal cellular (3+) sloughing with uncommon septal wall hyalinization

Multifocal cellular sloughing (>75% field) with common and/or prominent hyaline

the alveolar |the interstitial Hyaline debris filling the thickening
space space membranes airspaces relative to mock
0 None None None None < 2X
1 1-5 1-5 1 1 2X - 4X
2 >5 >5 >1 >1 >4X

4 [membranes
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Other Pathological Changes
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What Are We Going to Cover Today?

* Normal lung anatomy and histology

 Evaluating lung function

» Pathological changes to the lung

» Using animal models to study respiratory disease
* Vaccine development



Vaccine Development Process

e Preclinical Studies
e Clinical Trials

fefadifinine.
* Phasell itilatetitetetatin
* Safety, immunogenicity, dosage ittt aiadalalitsttites
* Young, healthy adult volunteers
* Phaselll

* Target population
* Placebo group

+ Phase I

 Efficacy studies
* Large diverse populations WHO.int
* Placebo group




Immune Responses to Vaccines

PR »
* Humeral Response B cell j}/{ A
N\ ey
* Antibody &jr% -
(<
e Cellular Reponses / AR N
e CD4+ T cells Humoral Response
« CD8+ T cells

* Ideally a vaccine elicits both
a strong humeral response

and a strong cellular ~ 5: e >

response
Cellular Response\ CD8+
(f“‘“ﬁ =
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Vaccine Components  —o—

ANTIGEN ADJUVANT

0
O’OV\OH HN \}’\ou
PRESERVATIVES STABILIZERS

* Antigen

: VA
* Preservatives opo &

SURFACTANTS RESIDUALS

e Stabilizers 2000 j
K DILUENT

e Surfactants

e Residuals
e Diluent N R —"VACONES. —\

e Adjuvant Q%
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Vaccine Approaches

* Live attenuated
* Inactivated

* Viral vectored
* Protein subunit
* mMRNA

Protein and Peptide
Subunit Vaccines

Whole Virus
Vaccines

Immune Cell
Therapy

Viral Vectors
Vaccines

Nucleic
Acid-Based
Vaccines

S Replicating

DNA-Vaccine Viral Vector
Nanoparticle and L2,

Virus-like Particle N\

__) Vaccines Y o) e

.



Live Attenuated Vaccines

 Weakened version of the

actual virus
* Present all target
antigens

* Tend to elicit strong
Immune responses

* Examples
* MMR

* Chickenpox

* COVID: Codagenix, Indian
Immunologicals

Weakened
SARS-CoV-2 ﬁ

C

Live attenuated virus
vaccines contain functioning
copies of the virus that have
been weakened.

£
B g, Antigen-
gen
® i'?if—\ presenting
cell
The virus does not ¥
cause disease, but it o ° o

can still replicate inside
the body and induce an

immune response. Helper

T cell ;fi Antigen

(o

Immune response
and memory



Inactivated Vaccines

e Uses the whole virus after it has
been killed with heat or
chemicals

e Contain all antigens but not
necessarily in native form

* Tend to primarily elicit antibody
responses

e Often include adjuvants

* Examples
* Polio
* Rabies virus
e COVID: Sinovac, Sinopharm

* . Ininactivated virus vaccines,
the genetic material of the
virus has been destroyed.

RNA destroyed

Adjuvant —— ™

&
The inactivated virus cannot \ Antigen-
presenting

replicate inside the body, so cell

higher doses are needed, %
tngically alongside an . ° o
adjuvant to strengthen the

. 2
IMMmune response.

Helper

T cell @J— Antigen
Inactivated virus
/ vaccines generally
only induce

antibody-mediated
immunity (not
cell-mediated).

Antibody-mediated immune
response and memory



Viral Vectored Vaccines

e Uses the backbone of a virus
to deliver viral genes

* Present specific antigens

* Tend to elicit strong immune
responses

* Examples
e Ebolavirus
* Canine Distemper Virus
* West Nile Virus (horses)

e COVID: AstraZeneca, Johnson
& Johnson

Viral vector
(eg adenovirus) Non-replicating viral vector
- _ vaccines work in a similar way
Gene encoding to replicating vectors ...
SARS-CoV-2
antigen \ Antigen-
presenting

... except that they cannot e cell
replicate inside the body o - 3

and so require higher

doses to be effective.
Helper d
Tcen@-

(®

Immune response
and memory



Protein Subunit Vaccines

SARS-CoV/- Subunit vaccines use the
Aﬁﬁugggeﬁ—’ « antigen of the virus without
. Q any genetic material, usually
o= . with an adjuvant to give a

» Uses a piece of a virus’s protein

. ' . b [ :
° FOCUSQS on a Sma”, Important Adjuvant etter immune response
portion of the virus Antigen-
. . . . . presenting
e Tend to primarily elicit antibody With the help of antigen- cell
ti lls, th ¢ ~
responses antigens are recognised by |
Oft . | d d t Iigﬁlﬁ‘?;gﬁg%aswﬁhareal
¢ en inciude aajuvants '
%‘.‘i"{ﬁff ) — Antigen
* Examples
* Pertussis / Subunit vaccines
* Hepatitis B f generally only induce
< > i it t
* HPV el medisted).
* COVID: Novavax Antibody-mediated immune

FESPONseE and memaory



MRNA Vaccines

* Contains the coding portion of a
virus protein

* Present specific antigens

* Tend to elicit strong immune
responses (we think)

* Examples
e COVID: Pfizer BioNTech, Moderna

Lipid delivery RNA vaccines are antigen-
vehicle \ coding strands of messenger
RNA ding RNA (mRNA), sometimes
e AR CoV. 5 -/ with additional RNA to help
o self-replication, delivered

antigen ’/ inside a lipid coat.
mRNA
- Once inside cells, the RNA,
Cell Self- after self-replicating, is

replication _~__ translated to produce the

"z .
= \v antigen.

) -3
Antigen /.o
\ Antigen-
presenting
cell
-3

The antigen is recognised, o =0

inducing an immune °

reaction.

Helper

T CE”@!— Antigen

Immune response
and memory
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