

Andrew B. Gladden, PhD Associate Professor Department of Pathology & Laboratory Medicine University of North Carolina at Chapel Hill Introduction to Pathology of Disease

October 5, 2021

- Understand the intrinsic cellular response used in genetic engineering.
- Understand why the mouse is used as a disease model in the lab.
- Learn how to overexpress a gene in a specific mouse tissue.
- Identify how to disrupt an endogenous gene in mice or cells.
- Become familiar with how human cells or tissue are studied in the lab.
- Learn what type of mice are used to grow human tissue.
- #1 GOAL!! Participate in class, ask questions as we move through different topics!

How Does One Gene Make a Large Amount of Protein?

Poll Question 2: Yes or No

NHEJ = Non-homologous End Joining	Repair pathway	NHEJ	HR	alt-NHEJ/ MMEJ	SSA	ICL repair	SSB repair	BER	A	A	G
HR = Homologous Recobination	Source of DNA damage Damage sensors	IR, diomimetics Topo II inhibitors Ku70/Ku80	X-linking agents, replication inhibitors, antimetabolites, Topo I inhibitors	PARP	MRN	X-linking agents FA core complex (FANCA, B, C, E, F, G, L and M)	IR, ROS, radiomimetics Topo I inhibitors H ₂ O ₂ , alkylating agents PARP	Alkylating agents DNA glycosylases, APE1	UV, alkylating agents PCNA	Alkylating agents, X-linkers XPC DDB2 CSA	DNA Pol proofreading errors MSH2, MSH3, MSH6, MLH1, PMS2
	Signaling/ mediator proteins	DNAPK	ATM, ATR, MK2, CtIP, BRCA1/BARD1 BRCA2, PALB2 RPA	8	CtIP	FANCD1 [BRCA2] D2, I J [BRIP1] N [PALB2] O [RAD51C] P [SL X4]			RAD6 RAD18	XPA, XPF RPA	
	Effector proteins	XRCC4 XLF LIG4 APLF Artemis PAXX WRN	RAD51 MUS81/EME1 SLX1/SLX4 RTEL1 BLM TOPOIII POLQ PARI RECQL5 FANCJ, BLM	XRCC1 LIG3, LIG1 CtIP POLQ	RAD52, others?	Shared with HR, TLS, and NER	XRCC1 PNKP POLβ FEN1, TDP1 Aprataxin, LIG1, LIG3A	As for SSB repair	REV1, POLH POLI, POLK	XPG ERCC1 POLE POLD1 LIG1, LIG3	EXO1 POLD LIG1

Brown et al., Cancer Discovery 7, p20 (2017)

Recombination repair DNA breaks by retrieving sequence information from undamaged DNA

- Understand the intrinsic cellular response used in genetic engineering.
- Understand why the mouse is used as a disease model in the lab.
- Learn how to overexpress a gene in a specific mouse tissue.
- Identify how to disrupt an endogenous gene in mice or cells.
- Become familiar with how human cells or tissue are studied in the lab.
- Learn what type of mice are used to grow human tissue.
- #1 GOAL!! Participate in class, ask questions as we move through different topics!

Are we all just a bag of cells?

From: The Laboratory Mouse 2012

The Lab Mouse Developmental Timeline

The Mouse Genetic Toolbox

Transgenic Mice

Relatively fast way to generate mice.

Random integration, does not target endogenous gene (generally)

Can be used to overexpress genes or genes that make enzymes in specific tissues.

) Drosophila (fly) Embryo

Molecular Biology of the Cell, Taylor & Francis 2014

The Mouse Genetic Toolbox

Transgenic Mice

Relatively fast way to generate mice.

Random integration, does not target endogenous gene (generally)

Can be used to overexpress genes, examples: Eu-Myc (Lymphoma)

Can be used to drive expression of enzymes utilized in site-specific mutagenesis, examples: MMTV-Cre, Wnt7a-Cre, B-actin-Flp.

	Sperm Oocyte	SMGT/ICSI-mediated gene transfer
	Zygote	 pronuclear DNA injection transposon-mediated gene transfer sub-zonal injection of lentiviral vectors
8	2-cell / 4-cell stage	
)()-	Morula	 ES cell injection and aggregation co-culture with lentiviral vectors
	Blastula	ES cell injection

injection; SMGT, sperm-mediated gene transfer.

- Understand the intrinsic cellular response used in genetic engineering.
- Understand why the mouse is used as a disease model in the lab.
- Learn how to overexpress a gene in a specific mouse tissue.
- Identify how to disrupt an endogenous gene in mice or cells.
- Become familiar with how human cells or tissue are studied in the lab.
- Learn what type of mice are used to grow human tissue.
- #1 GOAL!! Participate in class, ask questions as we move through different topics!

How Can You as a Researcher Hijack the Cells Intrinsic Responses to Disrupt a Gene?

How Can You as a Researcher Hijack the Cells Intrinsic Responses to Disrupt a Gene?

How Do You Get Your Targeting Template Into a Mouse?

The Mouse Genetic Toolbox

Homologous Recombineering in Mice Using Cre

Not a fast may to generate mice includes multiple crosses. Integration into the endogenous locus and uses endogenous promoter. Can be used to knockout one or both alleles of a gene. Can be used to knockin an altered allele (mutant, tagged etc.)

LoxP site contains internal 8bp non-palindromic sequence surrounded by 13bp inverted repeat.

**Cre is an enzyme, specifically, a DNA recombinase that identifies LoxP sites.

The Mouse Genetic Toolbox

Homologous Recombineering in Mice Using Cre

Using a Conditional Nf2 knockout to Study Skin Biology

wild-type

Red:Green:Actinβ4-Integrin

	Keratin 14-Cre Mouse						
Α	K14Pr	βg int	Сте тас	K14pA			

XX XA

4.4 kb 🚄 Apel-Spei

5.0 kb Xbel-BamHi

Giovannini et al. 2000

Nf2^{lox/lox} Mouse

loxP

юхР

2+3

KXh BXBX

Vasioukhin et al. 1999

The Mouse Genetic Toolbox

Homologous Recombineering in Mice

Vasioukhin et al. 1999

- Understand the intrinsic cellular response used in genetic engineering.
- Understand why the mouse is used as a disease model in the lab.
- Learn how to overexpress a gene in a specific mouse tissue.
- Identify how to disrupt an endogenous gene in mice or cells.
- Become familiar with how human cells or tissue are studied in the lab.
- Learn what type of mice are used to grow human tissue.
- #1 GOAL!! Participate in class, ask questions as we move through different topics!

CRISPR/CAS9 the New Flavor on the Block

Cas9 is an enzyme that causes double strand breaks.

Why is it so popular? Fast! Multiple species. Easier to generate guide RNA. But.....

From: Cancer and Zebrafish 2016

Recombination repair DNA breaks by retrieving sequence information from undamaged DNA

Figure 5-51 Molecular Biology of the Cell 5/e (© Garland Science 2008)

CRISPR/CAS9 the New Flavor on the Block

Cas9 is an enzyme that causes double strand breaks.

Why is it so popular? Fast! Multiple species. Easier to generate guide RNA. But.....

From: Cancer and Zebrafish 2016

- Understand the intrinsic cellular response used in genetic engineering.
- Understand why the mouse is used as a disease model in the lab.
- Learn how to overexpress a gene in a specific mouse tissue.
- Identify how to disrupt an endogenous gene in mice or cells.
- Become familiar with how human cells or tissue are studied in the lab.
- Learn what type of mice are used to grow human tissue.
- #1 GOAL!! Participate in class, ask questions as we move through different topics!

What about the bag of cells?

From: The Laboratory Mouse 2012

Clinical Testing Compound Attrition Rates

Preclinical	Oncolog compou	ay nds	All compoun ds			
testing ↓	Number entering	Success rate	Number entering	Success rate		
Phase I	100		100			
+)	61%	2	63%		
Phase II	61		63			
+)	28%	2	40%		
Phase III	17		25			
*)	43%	2	58%		
Registration	7		15			
+)	70%	2	77%		
Approval	5		11			

Rates from ten large pharmaceutical companies In the US and Europe from 1991-2000. Phase II, human efficacy assessment, is also the most expensive.

How do we get a better view of potential efficacy?

no CD4 or CD8 T cells.

SCID mice: *Prkdc^{scid}* homozygous

Sausville and Burger, 2006

How Fast Can we Assess Drug Treatment?

The Future of Humanized Mice

Table 1 (Continued)

athogen	Model	Infection route	Major findings	Reference
/aricella-zoster virus	CB17-scid mice with fetal human thymus/liver, sensory neurons, or skin transplants	IP	Human-specific pathogen that causes chickenpox; when reactivated in older individuals, causes shingles. Humanized mice have been used to study viral replication in human grafts and how the virus establishes latency.	Reviewed in 152
Human T cell leukemia virus	NOG mice	Engraftment of CD133 ⁺ human stem cells	Productive infection for 4–5 months, rapid expansion of CD4 ⁺ T cells, and HTLV-1–specific immune responses were observed.	145
Nipah virus	NSG mice	Intragraft inoculation	Human lung xenograft model that was successfully infected with Nipah virus, which replicated to high titers in the engrafted lung tissues.	153
Chlamydia	NSG BLT mice	Transcervically into the uterus	UV-killed chlamydia complexed with synthetic adjuvant particles induced a protective immune response. Vaccinated mice had CD4 ⁺ T cells producing IFNγ and decreased bacterial burdens 4 days post-rechallenge	154

Abbreviations: BLT, bone marrow/liver/thymus; BRG, BALB/c-Rag2^{null} IL2rg^{null}; HSC, hematopoietic stem cell; NK, natural killer; NOG, NODShi.Cg-*Prkdx^{scid} Il2rg^{tm1Sug}*; NSG, NOD.Cg-*Prkdx^{scid} Il2rg^{tm1Wjl}*; PBSC, peripheral blood stem cell; UV, ultraviolet.

- Understand the intrinsic cellular response used in genetic engineering.
- Understand why the mouse is used as a disease model in the lab.
- Learn how to overexpress a gene in a specific mouse tissue.
- Identify how to disrupt an endogenous gene in mice or cells.
- Become familiar with how human cells or tissue are studied in the lab.
- Learn what type of mice are used to grow human tissue.
- #1 GOAL!! Participate in class, ask questions as we move through different topics!