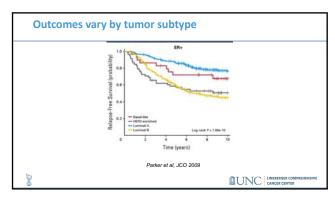
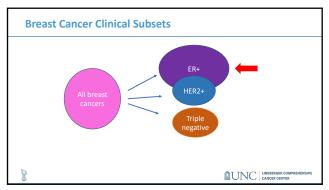
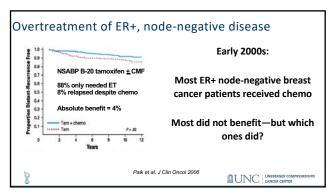
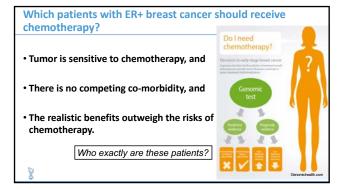

2

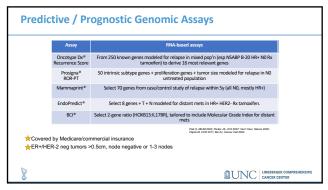


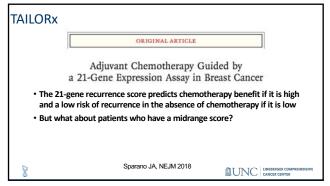


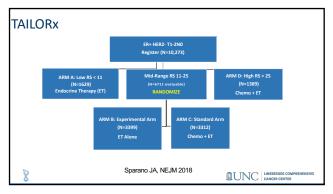
5

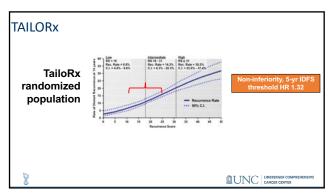


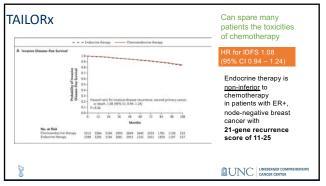

8


	rical Approach
2000	NIH Consensus Conference
	"Because adjuvant polychemotherapy improves survival, it should be recommended to the majority of women with localized breast cancer regardless of nodal, menopausal, or hormone receptor
	status."
	Bottom line: Tumor >1 cm, give chemo
	Adjuvant Therapy for Breast Cancer. NIH Consensus Statement 2000 November 1-3; 17(4): 1-23.
8	DUNC LIMITEREGER COMPREMENSIVE CONCER CENTER

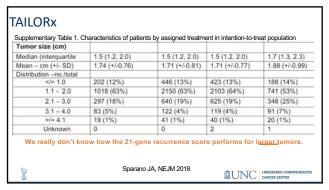


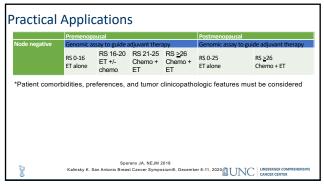

11





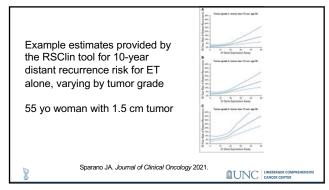
14

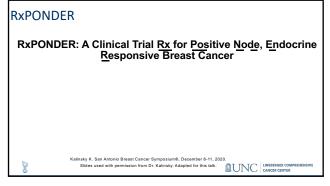




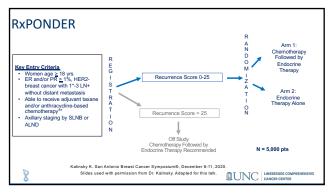
17

TAILORx – Women age ≤50 In women 50 years of age or younger, chemotherapy was associated with a lower rate of distant recurrence than endocrine therapy if the recurrence score was: • 16 to 20 (1.6% difference at 9 years) • 21 to 25 (6.5% difference at 9 years) Rates of overall survival were similar (at 9 years of follow up). See Table 3 in manuscript for Estimated Survival Rates According to Recurrence Score and Assigned Treatment Sparano JA, NEJM 2018


20


Take-Homes from TAILORx

The **RSClin tool** provides individualized prognosis estimates and chemotherapy benefit based on entry of patient information for the RS result, age, tumor size, and tumor grade.

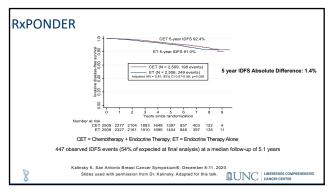

Sparano JA. Journal of Clinical Oncology 2021.

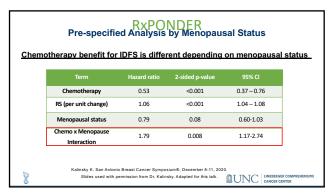
BUNC LINEBERGER COMPREHENSIT

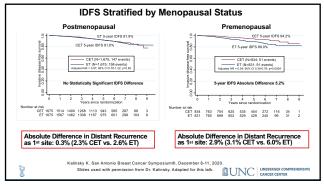
23

RxPONDER
Primary Objective Determine the effect of chemotherapy on invasive disease-free survival (IDFS)
in pts with 1-3 LN+ breast cancer and a RS < 25 and assess whether the effect depends on the RS
Primary Hypothesis.
 Chemotherapy benefit will increase as the RS increases from 0 to 25 in an Intent-to-Treat (ITT) analysis
Kalinsky K. San Antonio Breast Cancer Symposium®, December 8-11, 2020. Sides used with permission from Dr. Kalinsky. Adapted for this talk. LINEBEGGE COMPENDISTY CANCER CENTER

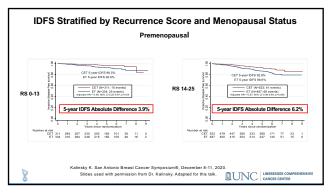
Baseline variable	Endocrine Therapy (n=2.506)	Chemotherapy (n=2.509)	Overall (n=5.015)
Race			
White	64.9%	66.4%	65.7%
Black	4.8%	5.1%	5.0%
Asian	6.8%	6.1%	6.5%
Other/Unknown	23.5%	22.3%	22.9%
Hispanic			
Yes	13.0%	11.9%	12.4%
No	67.6%	68.9%	68.3%
Unknown	19.4%	19.3%	19.3%
Menopausal status			
Premenopausal	33.2%	33.2%	33.2%
Postmenopausal	66.8%	66.8%	66.8%
Recurrence Score			
RS 0-13	42.7%	42.9%	42.8%
RS 14-25	57.3%	57.1%	57.2%
Nodal Dissection			
Full ALND	62.7%	62.5%	62.6%
Sentinel nodes only	37.4%	37.5%	37.4%


26


Baseline variable	Endocrine	Chemotherapy	Overall
	Therapy (n=2,506)	(n=2,509)	(n=5,015)
Positive Nodes 1 node	65.9%	65.0%	65.5%
2 nodes 3 nodes	24.9% 9.2%	25.7% 9.2%	25.3% 9.2%
Grade	9.2%	9.2%	9.2%
Low	24.6%	24.7%	24.7%
Intermediate	64.1%	66.1%	65.1%
High	11.3%	9.2%	10.3%
Tumor size	,		121270
T1	58.5%	57.7%	58.1%
T2/T3	41.5%	42.3%	41.9%


Pri	imary	Analys	sis with	Interaction Term
Term	Hazard ratio	2-sided p-value	95% CI	Amongst pts with RS 0-25,
Chemotherapy	0.56	0.07	0.30 – 1.05	RS does not predict the
RS (per unit change)	1.05	<0.001	1.02 – 1.07	relative benefit of chemotherapy for IDFS
Menopausal status	1.00	0.97	0.82-1.24	Relative benefit of chemo is not smaller with a lower RS and
Chemo x RS Interaction	1.02	0.30	0.98-1.06	not greater with a higher RS
Do			ancer Symposium®, from Dr. Kalinsky. Ada	December 8-11, 2020. Appled for this talk. AUNC LINEBERGER COMPREMENSIVE CANCER CENTER

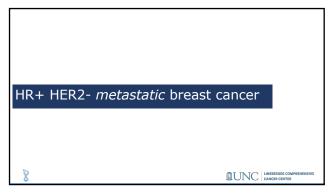
Primary A	nalysis withou	out Interaction	n Term:
Chemotherapy use	and RS are ind	ependently pro	gnostic for IDFS
Term	Hazard ratio	2-sided p- value	95% CI
Chemotherapy	0.81	0.026	0.67 – 0.96
RS (per unit change)	1.06	<0.001	1.04 – 1.07
Menopausal status	1.03	0.77	0.82-1.26
Pts who received Pts with a		ss likely to have a kely to have an ID	
Res.	itonio Breast Cancer Symposium ith permission from Dr. Kalinsky		INC LINEBERGER COMPREHENSIVE CANCER CENTER

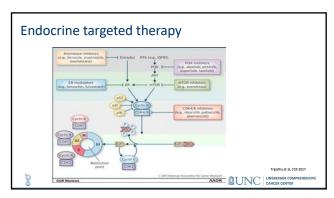

29

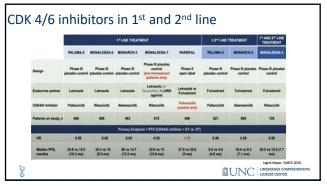
32

RXPONDER • At this interim analysis with 54% of anticipated IDFS events in the overall population, the 21-gene RS 0-25 was prognostic but did not show a treatment interaction with chemotherapy • Relative benefit of chemotherapy was similar across RS 0-25 • Postmenopausal women with RS 0-25 did not benefit from adjuvant chemotherapy in any subgroup • Pramenopausal women with RS 0-25 had benefit from the addition of chemotherapy to endocrine therapy • 46% decrease in IDFS events; benefit was observed across premenopausal

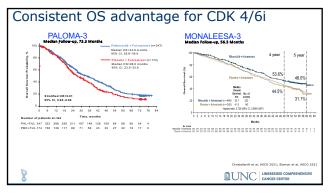
- subgroups
- 53% decrease in deaths, leading to a 5-year OS absolute improvement of 1.3%

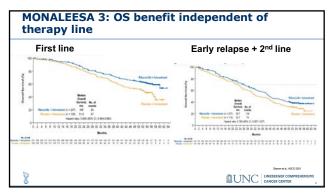

Kalinsky K. San Antonio Breast Cancer Symposium®, December 8-11, 2020.

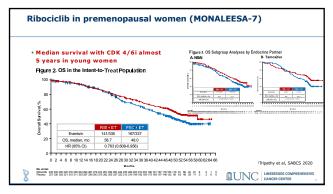

Slides used with permission from Dr. Kalinsky. Adapted for this talk.

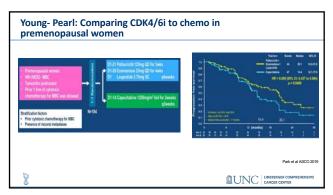

34

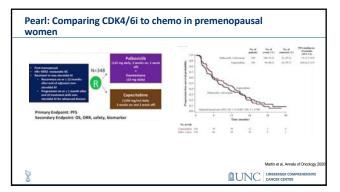
	Premenopa	iusal			Postmenopausal	
Node negative	Genomic as	say to guide a	idjuvant ther	ару	Genomic assay to gu	ide adjuvant therapy
	RS 0-16 ET alone		RS 21-25 Chemo + ET		RS 0-25 ET alone	RS ≥26 Chemo + ET
Node positive (1-3	No role for	genomic assa	ys		Genomic assay to gu	ide adjuvant therapy
.N)		(see RxPONE nefit accordin			RS 0-25 ET alone	RS ≥26 Chemo + ET
Node positive (4+ nodes)			No	role for geno Chemo +		
*Patient comorl	oidities, pre	eferences, a	and tumor	clinicopatho	ologic features mu	st be considered


35

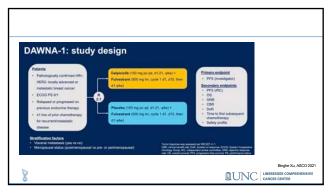


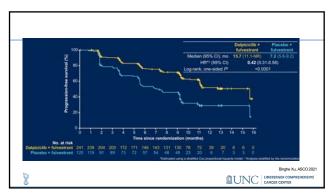

38

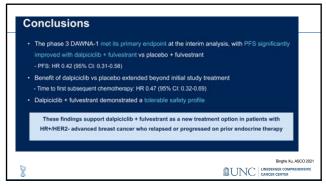


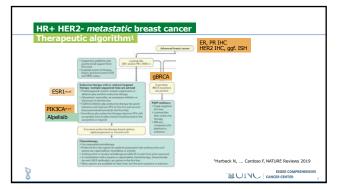


Subgroup	Ribocicilo + Fulvestrant	UP), on laterage	Hazard Ratio (95% CI)		
			144		
All patients	222/484 (45.9)	142/242 (58.7)	141	0.73 (0.59-0.90)	
Treatment line of ET for advance	86237 (35.4)	67/126 (52.3)	1-4-4	0.64 (0.46.0.86)	
Early relapse or second line		76/10 (67.3)		0.64 (0.46-0.86)	
	134(237 (90.5)	PR 1 (0 (07.3)		0.76 (0.00-1.04)	
Liver or lung involvement	110/242 (40.0)	77/122 (63.1)	1	0.73 (0.55-0.98)	
No	106/242 (43.0)	65/119 (54.6)		0.74 (0.54-1.01)	
Bone lesion only	104242 (40.0)	00119 (34.0)		0.74 (0.54 1.01)	
Yes	45/102 (44.1)	29/51 (56.9)	-	0.67 (0.42-1.00)	
No	177/382 (46.3)	113/190 (59.5)	14.7	0.74 (0.58-0.93)	
No of metadasis sites			- 111		
43	132/306 (42.9)	84/147 (57.1)	144	0.73 (0.55 0.90)	
2.3	90/176 (51.1)	5894 (81.7)	111	0.74 (0.53-1.04)	
Most recent therapy					
(Nonladjuvard	130/264 (49.2)	94/152 (61.6)	14-1	0.78 (0.60-1.01)	
Metastatic	57/112 (50.9)	25/41 (61.0)		0.67 (0.42-1.09)	
Age					
< 65 Years	116/258 (45.0)	75/129 (58.1)	H-1	0.73 (0.54-0.97)	
≥ 65 Years	106/226 (46.9)	67/113 (59.3)	H-(0.72 (0.53-0.99)	
Prior endocrine therapy					
Endocrine naive	48/139 (34.5)	39/74 (52.7) 18/25 (72.0)		0.62 (0.41-0.95)	
Endocrine resistance Endocrine sensitive	34/53 (64.2) 139/289 (48.1)	18/25 (72.0) 85/140 60.7)	1-1-1	0.82 (0.45-1.47) 0.73 (0.56-0.96)	
Endocrine sensitive	139/209 (48.1)	85/140/00.7)	171	0.73 (0.56-0.90)	
				1 1 1	
		0.125	0.25 0.5 1 2 4	8 16 32	
		-	Riboculli beller - Placete-beller	•	

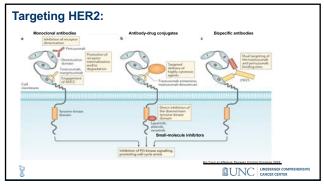

41

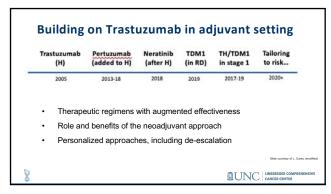


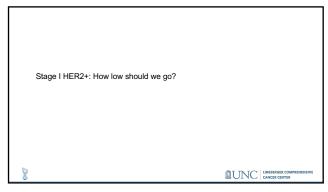


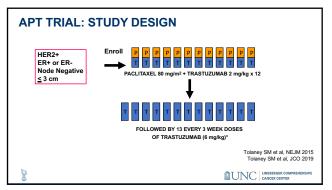

44

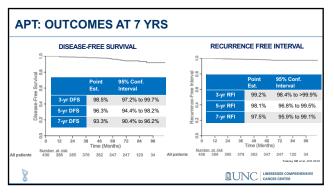


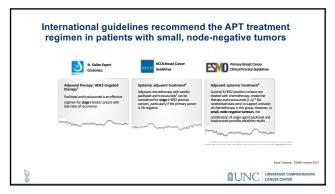


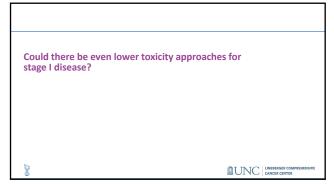

47

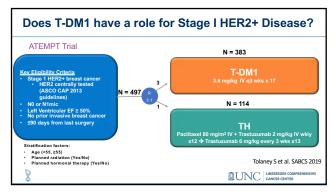


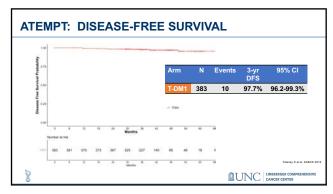


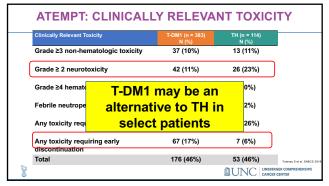

50



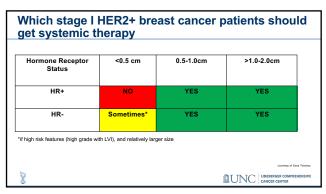


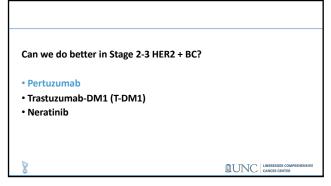

53

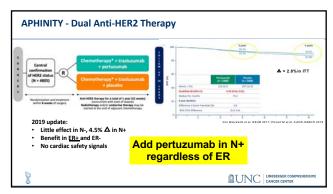


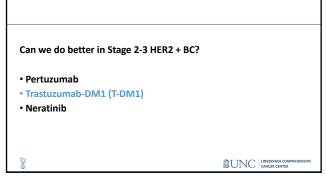


56

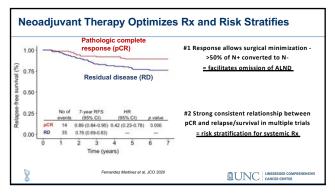


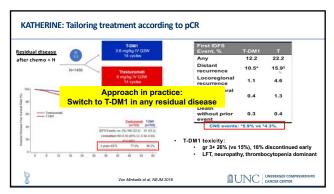

59

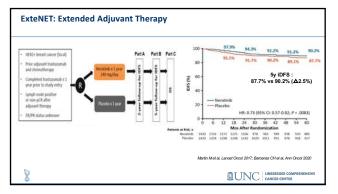

HR+/HER2+ (5-year estimates)	T1aN0 (n=102)	T1bN0 (n=89)
iDFS	86% (95% CI: 76-92)	86% (95% CI 76-92)
DRFS	96% (89-98%)	94% (95% CI:86-98%)
HR-/HER2+	T1aN0 (n=49)	T1bN0 (n=17)
iDFS	84% (95% CI: 69-92)	68% (95% CI 40-86)
DRFS	93% (95% CI 80-98)	94% (95% 63-99)
		Vaz-Luis, I et al. Ji

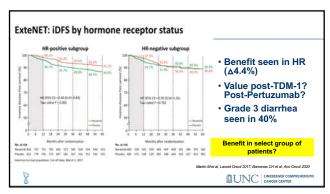


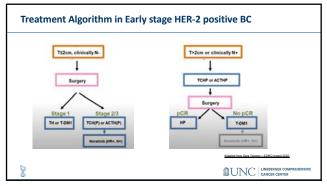
Can we do better in Stage 2-3 HER2 + BC?	
PertuzumabTrastuzumab-DM1 (T-DM1)Neratinib	
8	BUNC LINEBERGER COMPREHENSIVE CANCER CENTER


62

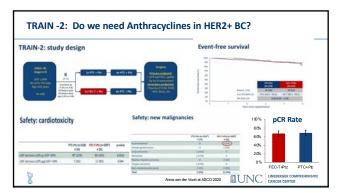


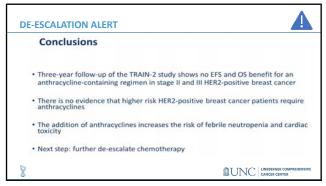

65

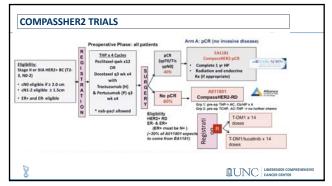


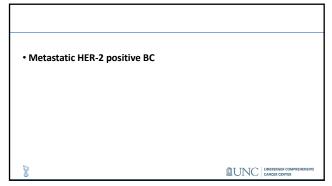


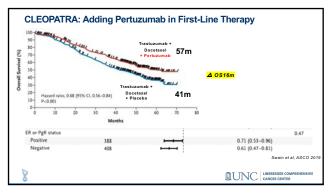
68

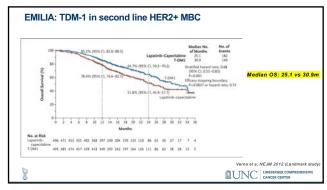


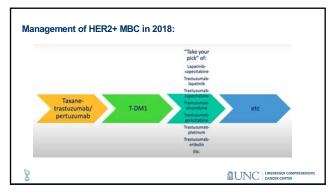


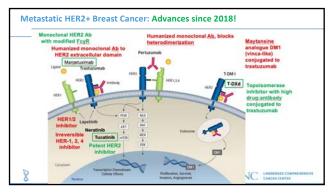

71

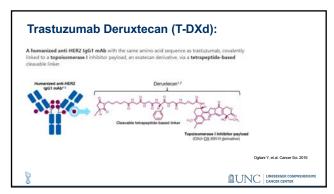


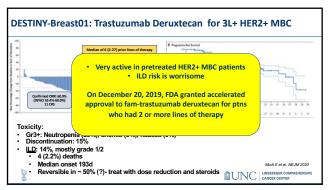

74

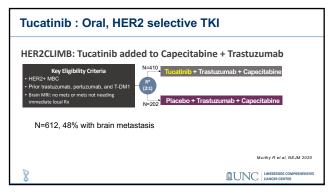


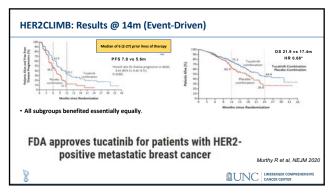

	•	Adapting adjuvant therapy based on response to preoperative therapy is a paradigm shift for HER2+ breast cancer
	•	Most patients with HER2+ T>2 cm or cN+ should receive preop TH-based CT
l	•	All patients who fail to achieve a pCR should receive adjuvant T-DM1
1	•	Extending adjuvant therapy with 1 yr of neratinib can benefit some patients
	•	Most patients with stage I HER2+ breast cancer should receive adjuvant TH $_{\odot}$ The value of neoadjuvant TH in stage I should be explored
		Future studies are looking at both escalation and de-escalation strategies New predictive/prognostic tools are needed for this purpose
8		BUNC LINEBERGER COMPREHENSIVE CANCER CENTER

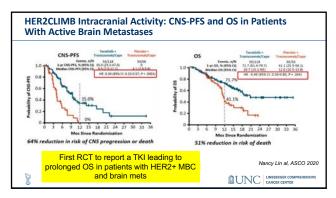

77

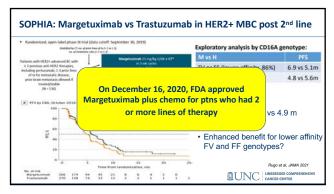


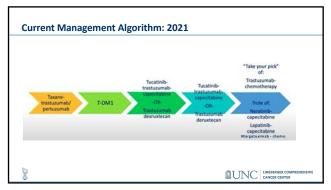



80






83



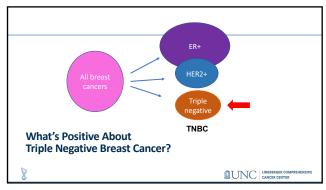
86

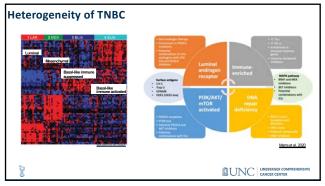
Several New Agents in Development

- Trastuzumab duocarmazine (SYD 985)
- Zanidatamab (ZW25)
- ZW49
- ZN-A-1041
- Pyrotinib
- Combinations with CDK 4/6 inhibitors
- Combinations with immunotherapy

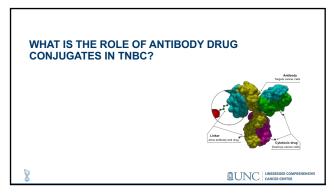
V

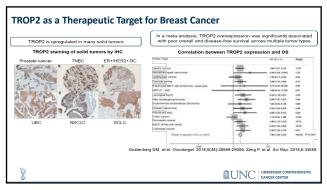
BUNC LINEBERGER COMPREHENSIV

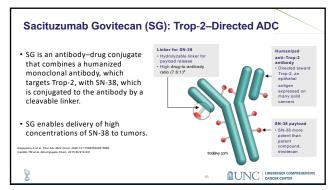

89

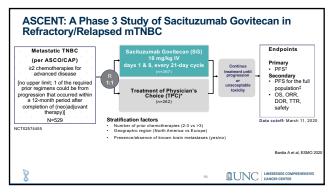

CARISMA CT-0508 STUDY 101

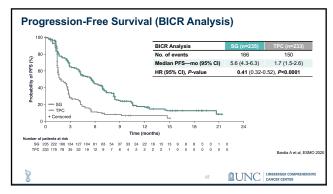
- CF-0508 is a cell product comprised of autologous, peripheral blood monocyte-derived, pro-inflammatory macrophages, transduced with adenoviral vector containing an anti-HER2 chimeric antigen receptor (CAR)
- CAR-T cell therapies have shown success in numerous hematologic malignancies, solid tumors remain a major challenge in the field.
- A Phase 1, First in Human Study of Adenovirally Transduced Macrophages Engineered to Contain an Anti-HER2 CAR in HER2 Overexpressing Solid Tumors.
- These engineered myeloid cells traffic to tumors, reduce tumor burden, reprogram the TME, and induce a broad anti-tumor adaptive immune response in pre-clinical models of HER2 overexpressing solid tumors.

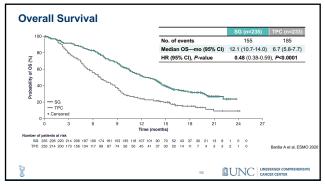

8


LINEBERGER COMPREHENSITY CANCER CENTER

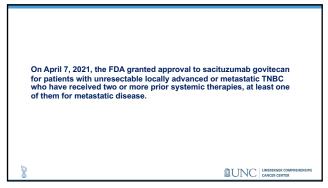


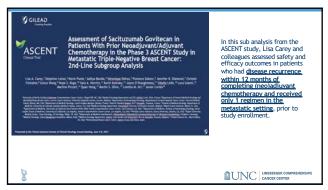

92

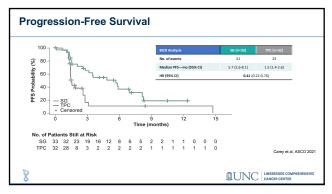


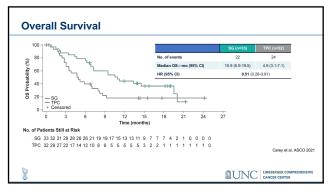


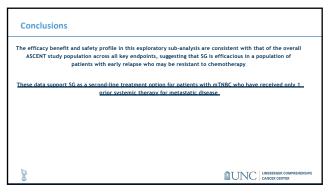
95

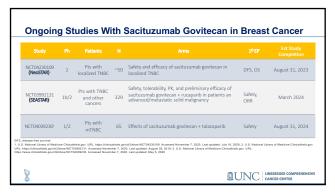


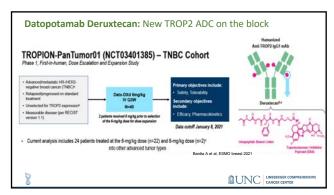


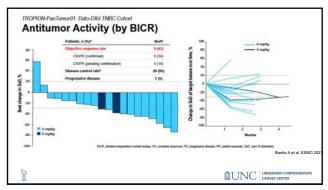

98


			٤	SG (n=258)			TPC (n=224)		
		TRAE*	All grade %	Grade 3, %	Grade 4, %	All grade, %	Grade 3, %	Grade 4, %	
		Neutropenia [†]	63	46	17	43	27	13	
	matologic	Anemia*	34	8	0	24	5	0	
не	natologic	Leukopenia [§]	16	10	1	11	5	1	
		Febrile neutropenia	6	5	1	2	2	<1	
		Diarrhea	59	10	0	12	<1	0	
Gastrointestinal	Nausea	57	2	<1	26	<1	0		
		Vomiting	29	1	<1	10	<1	0	
Otl		Fatigue	45	3	0	30	5	0	
Oti	ier	Alopecia	46	0	0	16	0	0	

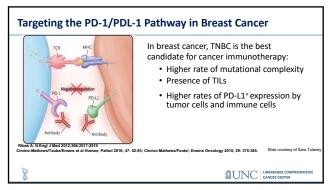


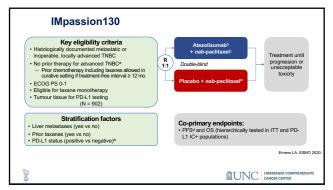

101



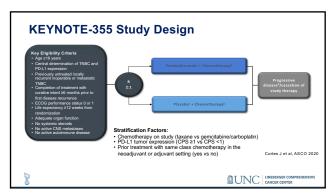


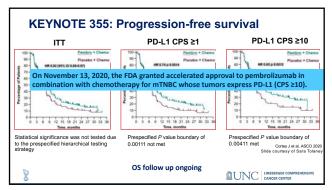
104

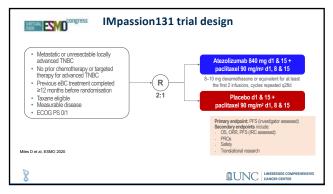


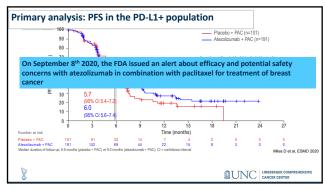


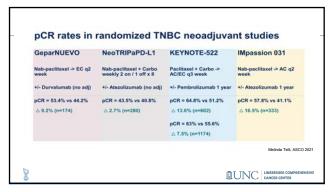
107

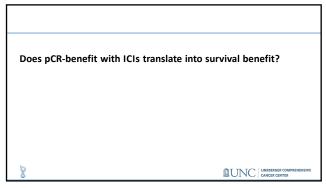


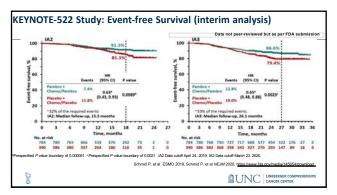


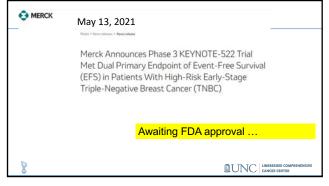

110

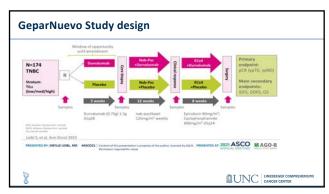


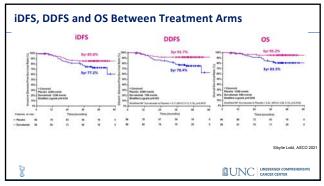

113



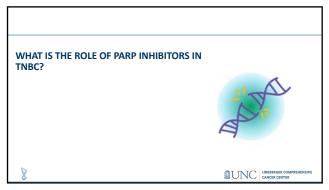


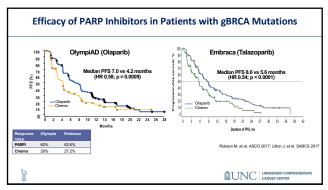

116

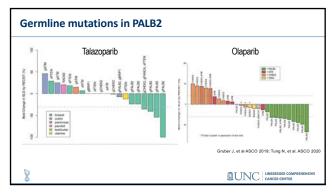


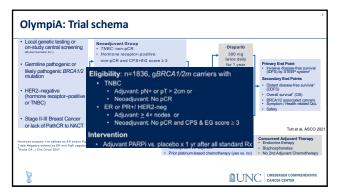


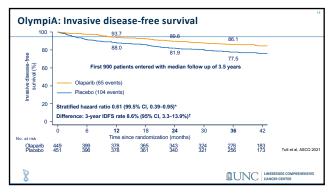
119

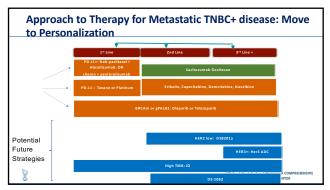




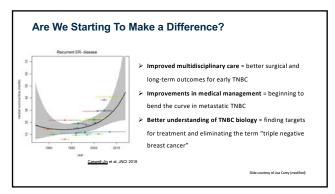

122



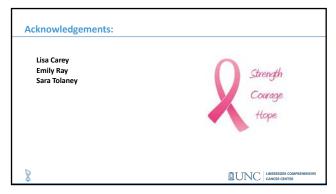

125



128


130

131


Summary

- Immunotherapy is now standard in PD-L1+ mTNBC
- 2 approved checkpoint inhibitors combined with chemotherapy
- Only a subset of patients can benefit
- Antibody drug conjugates
 - Sacituzumab is a new treatment option for TNBC
 - Other ADCs in development: LIV1A, TDxd, U3-1402, DS-1062
- $\bullet \ \ PARP \ inhibitors \ appear \ active \ in \ patients \ with \ gPALB2 \ and \ s+gBRCA1/2 \ mutations$
- Novel Immunotherapy combinations are being explored with PARP, anti-angiogenic agents, IL-2 agonists, IL-12, ADCs, and others

134

