

ITE COORDINATORS / PROMOTERS

Welcome New Site Coordinator

Madison Zeagler (UNC Lenoir Health Care)

Site Coordinators share publicity about upcoming events with other medical professionals so that they can attend at a designated site or via Zoom. They also set up a designated room for each event so that medical professionals can watch a presentation together.

Promoters share publicity about upcoming events with other medical professionals so that they can attend at a designated site or via Zoom.

Contact us at unccn@unc.edu to become a site coordinator or promoter!

3

FREE CE Credits - CNE (ANCC) - CME - ACPE - ASRT

Live Lectures unccn.org Patient Centered Care 2nd Wednesday — 12 pm – 1 pm

Research to Practice 4th Wednesday — 12 pm – 1 pm

Self-Paced, Online Courses learn.unccn.org

Any day and time that's convenient for you

NO CE Credits Available

MediaSite Library unccn.org/mediasite Any day and time that's convenient for you

YouTube Channel unccn.org/youtube Any day and time that's convenient for you

VuMedi Channel unccn.org/vumedi Any day and time that's convenient for you

For a complete listing and details on coming events visit: www.unccn.org/events

Joshua Zeidner, MD

Dr. Joshua Zeidner is an Assistant Professor of Medicine at University of North Carolina, Lineberger Comprehensive Cancer Center. Dr. Zeidner's expertise is in the management of patients with acute myeloid leukemia, myelodysplastic syndrome and myeloproliferative neoplasms.

His research focuses on drug development, and the design and conduct of innovative clinical trials for patients with acute myeloid leukemia and myelodysplastic syndrome.

Since arriving to University of North Carolina in 2014, Dr. Zeidner has led the expansion and growth of the clinical trials program in the Leukemia group. He currently leads the Leukemia Clinical Trials Research Group where a multitude of cutting-edge clinical trials are available for acute and chronic leukemias, myelodysplastic syndrome and myeloproliferative neoplasms.

His specific clinical research focus encompasses drug development in two distinct pathways in acute myeloid leukemia: 1) cyclin-dependent kinase inhibitors, and 2) innovative immunotherapeutic strategies.

5

□ Respond at PollEv.com/unccn

☐ Text UNCCN to 22333 once to join, then A, B, C, or D

UNC CANCER NETWORK

Acute myeloid leukemia (AML) starts in the

Bone Marrow A

Brain B

Heart C

Lungs **D**

Answers to this poll are anonymous

ISCLOSURES

This activity has been planned and implemented under the sole supervision of the course directors, in association with the UNC Office of Continuing Professional Development (UNC CPD). William A Wood, MD, MPH, and CPD staff have no relevant financial relationships with commercial interests as defined by the ACCME.

Joshua Zeidner, $\mbox{\scriptsize MD},$ has no financial relationships with commercial interests as defined by the ACCME.

7

Management of Acute Myeloid Leukemia in 2020: A Paradigm Shift for Older Adults?

Joshua Zeidner, MD

Assistant Professor of Medicine
Leader, Leukemia Clinical Trials Group
University of North Carolina
Lineberger Comprehensive Cancer Center

Twitter: @LeukDocJZ

9

Disclosures

- Honoraria: AbbVie, Agios, Celgene, Daiichi Sankyo, Genentech, Pfizer, Tolero
- Consultancy: AsystBio Laboratories, Celgene, Takeda
- Research support: Celgene, Merck, Takeda, Tolero

Objectives

- To discuss pathogenesis/etiology of AML
- To discuss diagnostic testing in AML
- To discuss management of AML in older patient populations in the context of recent drug approvals
- To highlight investigational agents in development and evolving treatment paradigms for older adults

11

Case

- 75 yo M with PMHx of chronic myelomonocytic leukemia (CMML) & HTN presented to urgent care in 10/2017 with lower extremity edema and fatigue.
 - CMML diagnosed in December, 2016- WBC = 40,000 with monocytosis, no significant cytopenias, Bone marrow biopsy at Dx revealed 1% blasts, trilineage dysplasia (CMML-0)
- At presentation, WBC = $174x10^9/L$, Diff = range of differentiation, blasts >20%, Hb = 9.6 g/dL, Platelets = $70x10^9$ /L, uric acid = 12.0 mg/dL, creatinine = 1.3 mg/dL, LDH = 1,659
- Denies any symptoms of chest pain or dyspnea.
- Bone marrow biopsy = Hypercellular (80%) marrow with 31% blasts + promonocytes consistent with AML
 - · Normal cytogenetics (46,XY) and NGS Mutational Panel WNL

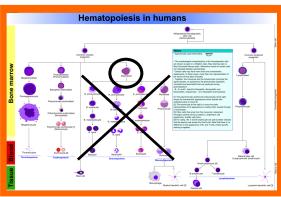
Question 1

What is the appropriate next step in the management of this patient?

- A) 7+3 induction since this patient has AML and AML shall be treated with 7+3
- B) IVF's, Leukapharesis
- C) IVF's, hydroxyurea cytoreduction, allopurinol
- D) IVF's, hydroxyurea cytoreduction, allopurinol, Rasburicase

13

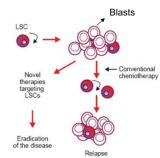
Question 2


What is the optimal treatment strategy for this patient?

- A) 7+3 induction chemotherapy since this patient has AML and AML shall be treated with 7+3
- B) CPX-351 Induction Chemotherapy
- c) Azacitidine
- D) Azacitidine + Venetoclax
- E) Clinical Trial

What is AML?

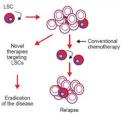
- Adapted from commons.Wikimedia.org/wiki/file:hematopoiesis_(human)_diagram.png
- Clonal proliferation of myeloid precursors (i.e. myeloblasts)
 - Reduced capacity for differentiation
 - Reduced capacity for cell death-> uncontrolled proliferation



15

Pathogenesis of AML

- Stem Cell Hypothesis- AML arises from early hematopoietic progenitor/stem cell- LSC
- Stem cells- 3 basic properties
 - Not cell cycle-dependent
 - Capable of self-renewal
 - · Produce committed progenitor cells
- Stem cells inherently chemoresistant
- Origin of LSC likely dictates prognosis and drug resistance


Cancer Control 2004- H. Lee Moffitt Cancer Center and Research Institute

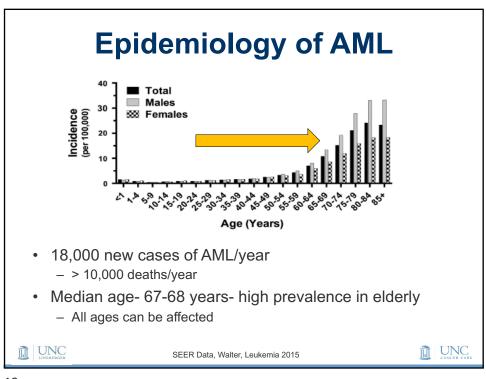
How To Cure AML?

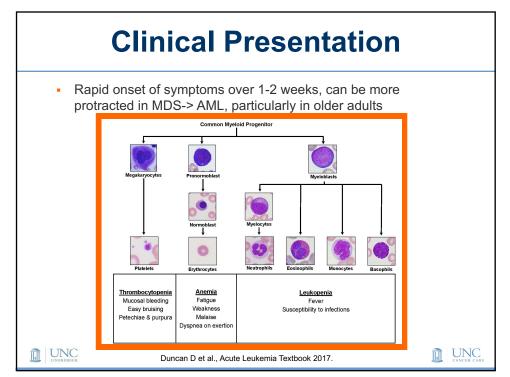
- Holy grail of AML = Cure
- Working hypothesis is that all (or most) AML's arise from a LSC
- The more primitive LSC- harder to eradicate -> refractory and/or relapse
- Genetic features of AML provide a clue for how primitive AML is

Cancer Control 2004- H. Lee Moffitt Cancer Center and Research Institute

17

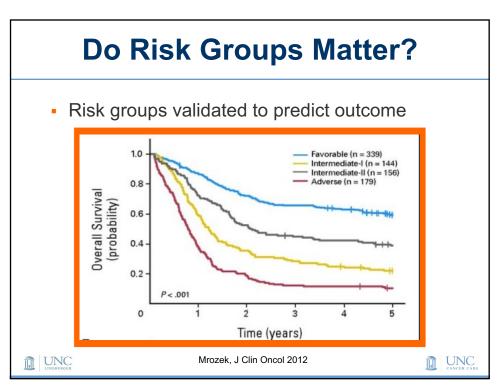
Pathology of AML

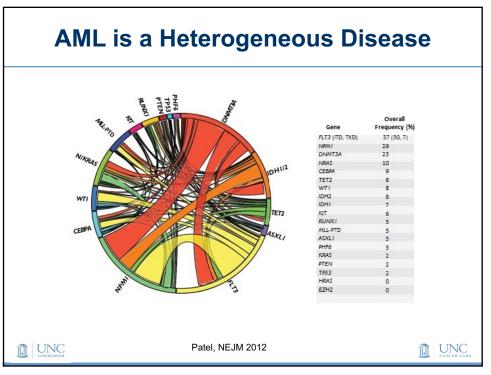

- Diagnosis: ≥20% myeloblasts in PB or BM
 - Blast % irrelevant in CBF AML [t(8;21); inv(16)] and APL
- Morphology: Smooth chromatin, prominent nucleoli Auer Rods
- Immunophenotype:
 - Myeloid antigens:
 - MPO, CD13, CD33, CD15
 - Monocytic antigens:
 - NSE, CD11c, CD14, CD64, Lysozyme
 - · Blast markers:
 - · CD34, CD117

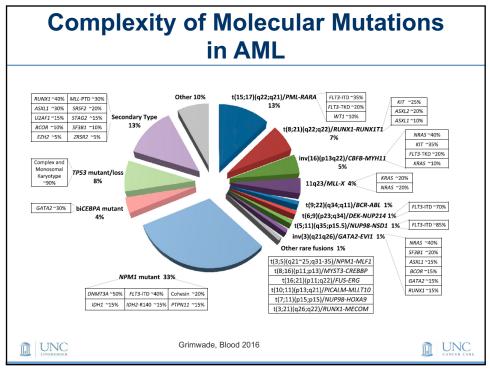


Maslak P, ASH Image Bank

UNC




Classification/Prognostication


- FAB Classification outdated (M0-M7)
- Genetic information critical for prognostication
- European LeukemiaNet Classification 2017

ELN Risk	Cytogenetic/Molecular	Incidence- Younger pts	Incidence- Older pts
Favorable	 t(8;21); inv(16); t(16;16) NPM1 mutation w/o FLT3-ITD mut. OR with FLT3-ITD^{low} Biallelic mutated CEPBA 	41%	20%
Intermediate	 Mutated NPM1 and FLT3-ITD^{high} Wild-type NPM1 w/o FLT3-ITD or with FLT3-ITD^{low} t(9;11) Other 	37%	49%
Adverse	 Inv(3); t(3;3); t(6;9); t(v;11); -5; del(5q); -7; -17/abnl(17p); complex Wild type NPM1 & FLT3-ITD^{high} Mutated RUNX1, ASXL1, TP53 	22%	31%
UNC	Mrozek, J Clin Oncol 2012; Dohner, Blood	d 2017	<u></u>

21

11 Genomic Classes of AML

Genomic Subgroup	Frequency in the Study Cohort (N=1540)	Most Frequently Mutated Genes*
	no. of patients (%)	gene (%)
AML with NPM1 mutation	418 (27)	NPM1 (100), DNMT3A (54), FLT3 ^{ITD} (39), NRAS (19), TET2 (16), PTPN11 (15)
AML with mutated chromatin, RNA-splicing genes, or both $\dot{\gamma}$	275 (18)	RUNX1 (39), MLL ^{PTD} (25), SRSF2 (22), DNMT3A (20), ASXL1 (17), STAG2 (16), NRAS (16), TET2 (15), FLT3 ^{ITD} (15)
AML with TP53 mutations, chromosomal aneuploidy, or both;	199 (13)	Complex karyotype (68), -5/5q (47), -7/7q (44), TP53 (44), -17/17p (31), -12/12p (17), +8/8q (16)
AML with inv(16) (p13.1q22) or t(16;16) (p13.1;q22); CBFB-MYH11	81 (5)	inv(16) (100), NRAS (53), +8/8q (16), +22 (16), KIT (15), FLT3 ^{TKD} (15)
AML with biallelic CEBPA mutations	66 (4)	CEBPA biallelic (100), NRAS (30), WT1 (21), GATA2 (20)
AML with t(15;17) (q22;q12); PML-RARA	60 (4)	t(15;17) (100), FLT3 ^{ITD} (35), WT1 (17)
AML with t(8;21) (q22;q22); RUNX1-RUNX1T1	60 (4)	t(8;21) (100), KIT (38), -Y (33), -9q (18)
AML with MLL fusion genes; t(x;11) (x;q23)	44 (3)	t(x;11q23) (100), NRAS (23)
AML with inv(3) (q21q26.2) or t(3;3) (q21;q26.2); GATA2, MECOM(EVI1)	20 (1)	inv(3) (100), -7 (85), KRAS (30), NRAS (30), PTPN11 (30), ETV6 (15), PHF6 (15), SF3B1 (15)
AML with IDH2 ^{R172} mutations and no other class-defining lesions	18 (1)	IDH2R172 (100), DNMT3A (67), +8/8q (17)
AML with t(6;9) (p23;q34); DEK-NUP214	15 (1)	t(6;9) (100), FLT3 ^{ITD} (80), KRAS (20)
AML with driver mutations but no detected class-defining lesions	166 (11)	FLT3 ^{ITD} (39), DNMT3A (16)
AML with no detected driver mutations	62 (4)	
AML meeting criteria for ≥2 genomic subgroups	56 (4)	

UNC LINEBERGER

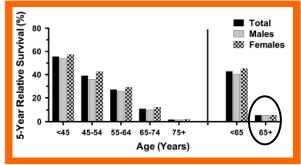
UNC CANCER CARE

Driver Mutations With Effect on OS

Table 2. Driver Mutations with th	e Strongest Effect on	Overall Survival a	nd Other Clas	Gene–gene interactions			
Variable	Frequency in Study Cohort (N=1540)	Hazard Ratio for Death (95% CI)	P Value	NPM1–FLT3 ^{ITD} –DNMT3A	93 (6)	1.5 (1.2–1.9)	0.0002
	no. of patients (%)			AND STATED	1. (1)	1.0010	
Main effects				MLL ^{PTD} _FLT3 ^{TKD}	10 (1)	1.4 (1.2–1.8)	0.0005
inv(3), GATA2, MECOM(EVI1)	23 (1)	2.9 (1.8-4.7)	9×10 ⁻⁶	DNMT3A-IDH2R140	47 (3)	1.4 (1.1-1.8)	0.007
TP53	98 (6)	1.7 (1.4-2.2)	7×10 ⁻⁶	STAG2-IDH2R140	11(1)	0.8 (0.6-0.9)	0.01
Complex karyotype	159 (10)	1.4 (1.2–1.7)	2×10 ⁻⁶			, ,	
BRAF	9 (1)	1.4 (1.1-1.8)	0.009	NPM1-FLT3 ^{TKD}	53 (3)	0.7 (0.6–0.9)	0.009
SRSF2	89 (6)	1.4 (1.1–1.7)	0.003	DNMT3A-RAD21	19 (1)	0.7 (0.5-0.9)	0.0008
FLT3 ^{ITD}	341 (22)	1.4 (1.2–1.7)	0.0008	Other class-defining lesions		•	
+21	39 (3)	1.3 (1.1–1.6)	0.001				
-5/5q	107 (7)	1.3 (1.1–1.5)	0.0007	t(x;11), not MLLT3-MLL	37 (2)	1.4 (1.0-2.1)	0.06
-17/17p	74 (5)	1.3 (1.1–1.5)	0.003	ASXL1	70 (5)	1.3 (1.0-1.6)	0.04
+13	21 (1) 88 (6)	1.3 (1.1–1.5) 1.3 (1.1–1.5)	0.004	ZRSR2	13 (1)	1.3 (1.0-1.7)	0.04
		, ,				, ,	
		. ,		RUNX1	133 (9)	1.1 (0.9–1.3)	0.5
NPM1		, ,	0.0004	t(9;11), MLLT3-MLL	18 (1)	0.8 (0.4-1.4)	0.5
CEBPA biallelic	73 (5)	0.6 (0.4–0.7)	4×10 ⁻⁵	IDH 2 ^{R172}	39 (3)	0.8 (0.6–1.0)	0.07
t(15;17), PML-RARA	65 (4)	0.3 (0.2–0.4)	5×10 ⁻⁸			, ,	
inv(16), CBFB-MYH11	82 (5)	0.3 (0.2–0.4)	4×10 ⁻⁹	t(8;21), RUNX1–RUNX111	63 (4)	0.7 (0.4–1.0)	0.03
-9q† +22† NPM1 CEBPA ^{biallelic} t(15;17), PML-RARA	53 (3) 26 (2) 436 (28) 73 (5) 65 (4)	1.2 (1.1–1.5) 1.2 (1.1–1.4) 0.7 (0.6–0.9) 0.6 (0.4–0.7) 0.3 (0.2–0.4)	0.01 0.008 0.0004 4×10 ⁻⁵ 5×10 ⁻⁸	RUNX1 t(9;11), MLLT3-MLL IDH2 ^{R172} t(8;21), RUNX1-RUNX1T1	133 (9)	1.1 (0.9–1.3)	

Myeloid Molecular Panel- UNC

- NGS Panel of 33 genes- most commonly mutated in MDS/AML
- Performed on all diagnostic bone marrow aspirates in MDS/AML
- · Recheck at time of relapse- evolving area
- Mutations can be prognostic, therapeutic, and/or can monitor minimal residual disease (MRD)



UNC CANCER CARE

27

AML Outcomes

 Extremely poor prognosis with conventional therapy

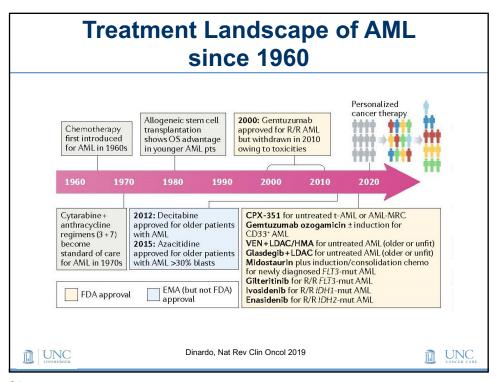
5-year survival rates = 40% in <65 yrs and
 10% in <u>></u>65 yrs

UNC

Walter, Leukemia 2015

Question 3

Have overall outcomes improved in AML patients over time?


- A) No, long-term survival has not changed over time
- B) Yes, long-term survival has improved steadily since 1970's in both younger & older pts but this is not due to chemotherapy
- C) Yes, long-term survival has improved since 1970's in younger pts due in large part to supportive care and transplant but much less so in older pts
- D) Yes, long-term survival has improved steadily since 1970's in both younger & older pts due to more effective chemotherapy

29

AML Outcomes Over Time MRC AML Trials: Overall Survival Age 15-39 - MRC AML Trials: Overall Survival Age 60 1970-79 2000-01 1970-79 2000-01 1970-79 2000-01 1970-79 2000-01 1970-79 2000-01 1970-79 2000-01 1970-79 2000-01 2000-0

31

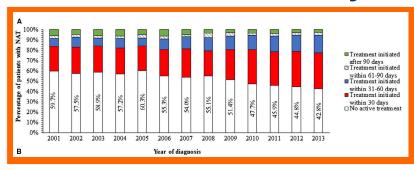
Question 4

Why do elderly (>60-65 years) AML patients have worse outcomes than younger patients?

- A) Older patients are more frail and less apt to tolerate intensive therapies
- B) Higher proportion of adverse-risk
- C) Higher proportion of secondary AML
- D) Treatment nihilism in the community
- E) All of the above

UNC CANCER CAR

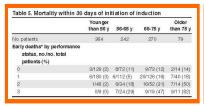
Why Do Elderly AML Have **Poor Prognosis?**

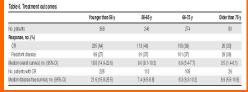

- Age- tend to be more frail, more comorbidities
 - Less able to tolerate intensive therapy
 - Allogeneic transplant mainly performed in ≤70-75 years
- Biology of disease
 - Increased risk of adverse-risk karyotype & mutations- TP53
- Increased incidence of secondary AML from MDS
 - · Very poor prognosis
- Lack of effective Tx options, treatment nihilism?

33

Many Elderly AML Pts Not **Treated in Community**

- Retrospective analysis from SEER database- 2001-2013
- 14,089 AML pts diagnosed b/w 66-99 years
- Overall trend of more pts being treated with chemotherapy agents over time- still significant proportion untreated


Zeidan, Cancer 2019



Intensive Chemo in Elderly

- Elderly AML defined as age >60-65 years
- Intensive chemo- SOC for <60 years
- Older adults have significantly higher rates of toxicity and lower clinical efficacy with 7+3 induction

- Even those with good ECOG PS have poor outcomes w/ 7+3 in elderly
- Can be done in select scenarios in >65 years (i.e. favorablerisk dz)

Appelbaum, Blood 2006

35

CPX-351- Liposomal "7+3"

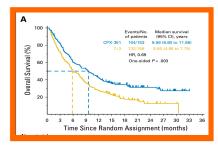
- Liposomal formulation of 7+3- designed to mitigate toxicity of 7+3 and improve efficacy- true intensive chemo
- Clinical activity noted in a randomized phase 2 study in newly Dx AML >60 years- CPX-351 vs. 7+3
 - CR rates = 67% vs. 51%, p=0.07
 - Median OS = 14.7 months vs. 12.9 months, lower 60-day mortality with CPX-351
 - Secondary AML appeared to have most benefit
- Data led to a randomized phase 3 study of CPX-351 vs. 7+3 in newly Dx AML with MDS-Related Changes, t-AML, or Secondary AML from MDS/CMML in pts 60-75 years
 - · Older adults fit for intensive chemotherapy
 - Primary endpoint = OS

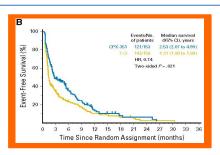
Lancet, Blood 2014; Lancet, J Clin Oncol 2018

AML with MDS-Related Changes

- Presence of preexisting MDS OR:
- Morphology- multilineage dysplasia (≥50% dysplasia in ≥2 lineages)
 - · W/O NPM1 or biallelic CEBPA mutations
- Presence of MDS-related cytogenetics
 - Complex Karyotype - t(2;11) -7/del(7q) - t(5;12)
 - Del(5q)/t(5q) - t(5;7)
 - i(17q)/t(17p)- t(5;17) -13/del(13q) - t(5;10)
 - Del(11q) -t(3;5)
 - Del(12p)/t(12p)
 - Idic(X)(q13)
 - t(11;16)
 - t(3;21)
 - t(1;3)

Arber, Blood 2016





37

UNC

CPX-351 > 7+3 in Older Adults with **AML** with MRC

- CPX-351 led to superior outcomes vs. 7+3 in older, fit adults with AML with MRC
- Median OS 9.6 vs. 6 months, p = 0.003
- CR rates = 48% vs. 33%, p=0.016, similar CR duration
- CPX-351 led to superior outcomes post-BMT

Lancet, Blood 2014; Lancet, J Clin Oncol 2018

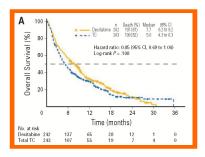
CPX-351 Summary

- CPX-351 FDA-approved for management of AML with MRC, treatment-related AML or AML from preexisting MDS/CMML
 - No age restriction by label but studies have only conferred benefit in older adults up to age 75 years
 - Studies ongoing in other patient subpopulations- i.e. younger AML pts, other risk groups, combination strategies
- This study highlights that 7+3 may not be a useful comparator
 - Dismal outcomes with 7+3 and should not be used in this older adverse-risk pt population
- CPX-351 new SOC for older, FIT AML pts with AML with MRC- best done in pts who may be BMT candidates
 - Subsets of pts who truly benefit evolving area
- Moves the needle slightly- still need better therapies

39

Low-Intensity Strategies

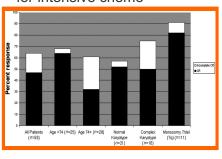
- Multiple studies have shown that any Tx leads to improved OS compared with best supportive care alone
- Low dose cytarabine (LDAC)- old standard- improved OS compared with best supportive care- CR rates with LDAC = 18% and median OS 6-7 months1
- Hypomethylating agents- Azacitidine or Decitabine- not approved for AML but generally reimbursable
 - Approved for MDS
 - Has been used as SOC in USA for >10 years
- Combination therapies now leading to superior outcomes


1) Burnett, Cancer 2007

Decitabine

Randomized Phase 3 study of Decitabine (5 days) vs. Physician choice (LDAC or Best Supportive Care) for newly Dx elderly (≥65 years) AML

- N=485 pts; Median age = 73
- Intermediate & Poor-risk cytogenetics
- CR rates = 17.8% vs. 7.8%
- Median OS = 7.7 months vs. 5.0 months- p = 0.106
- Not FDA-approved


UNC

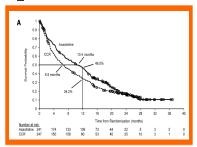
Kantarjian, J Clin Oncol 2012

41

Decitabine- 10 days

Phase II Study of newly dx AML ≥60 years not candidates for intensive chemo1

- N=53 pts, median age = 74 yrs
- CR/CRi rate = 64%
- Median OS ~1 year
- Subsequent studies have suggested high CR's in TP53 mut AML²
- Enthusiasm for 10-day tempered after randomized phase 2 study showed no improvement versus 5-days3


1) Blum, PNAS 2010; 2) Welch, N Engl J Med 2016; 3) Short, Lancet Haematol 2019

Azacitidine

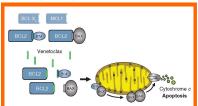
Randomized Phase 3 study of Azacitidine vs. Physician Choice (7+3, LDAC, Best Supportive Care) in newly Dx AML ≥65 years with ≥30% blasts

- N=488 pts; Median age = 75 yrs
- Intermediate & Poor-risk cytogenetics
- CR rates = 27.8% vs. 25.1% • 7+3 = 47.7%
- Median OS = 10.4 months vs. 6.5 months, p= 0.10 but reached significance censoring for subsequent Tx
- Pts preselected for 7+3-> N=87 randomized
- Median OS = 13.3 months vs. 12.2 months
- Despite lower CR rates, should 7+3 be used at all in elderly?

Dombret, Blood 2015

43

Summary of HMA's


- Reasonable first-line strategy in all older AML pts (≥65 years)
 - · Particularly in pts who are not BMT candidates
- No data comparing HMA's to CPX-351 but no advantage to 7+3 over Azacitidine in ≥65 years
- HMA's are less toxic than intensive chemo, outpatient
- Disadvantages- Tx continues indefinitely, low CR rates- can take a few months to see response, cytopenias can persist
- How can we improve HMA's?

HMA's + Venetoclax

Venetoclax- oral BCL-2 inhibitor- modest response rates as single agent in R/R AML- 20%

- Phase 1b study of HMA + Venetoclax in newly dx AML ≥65 years
- Eligibility = ineligible for intensive chemo due to:
 - Age >75 years
 - Cardiac Dz
 - Prior anthracyclines
 - High prob. Of mortality
- Arm A: Decitabine 20 mg/m² IV x 5 days + Venetoclax
- Arm B: Azacitidine 75 mg/m² IV x 5 days + Venetoclax
- Safe dose chosen- 400 mg daily

Dinardo, Blood 2019

45

HMA's + Venetoclax

- Median age = 74 years
- Most had de novo AML (75%)
- CR/CRi rates = 67%, median duration of CR = 11.3 months
- Similar CR rates b/w Azacitidine and Decitabine
- Median OS = 17.5 months

Subgroup	Evaluable for response/OS, n (%)	CR + CRi, n (%)	n for Median duration of CR + CRi	Median duration of CR + CRi, mo (95%CI)	Median OS, mo (95%CI)
All patients	145	97 (67)	97	11.3 (8.9, NR)	17.5 (12.3-NR)
Cytogenetic risk Intermediate Poor	74 (51) 71 (49)	55 (74) 42 (60)	55 42	12.9 (11, NR) 6.7 (4.1, 9.4)	NR (17.5-NR) 9.6 (7.2-12.4)
Age ≥75 y <75 y	62 (43) 83 (57)	40 (65) 57 (69)	40 57	9.2 (6.4, 12.5) 12.9 (9.2, NR)	11 (9.3-NR) 17.7 (14.2-NR)
AML De novo Secondary	109 (75) 36 (25)	73 (67) 24 (67)	73 24	9.4 (7.2, 11.7) NR (12.5, NR)	12.5 (10.3-24.4) NR (14.6-NR)
Mutations* FLT3† IDH1 or 2‡ NPM1	18 (12) 35 (24) 23 (16)	13 (72) 25 (71) 21 (91)	13 25 21	11 (6.5, NR) NR (6.8, NR) NR (6.8, NR)	NR (8-NR) 24.4 (12.3-NR) NR (11-NR)
TP53	36 (25)	17 (47)	17	5.6 (1.2, 9.4)	7.2 (3.7-NR)

UNC

Dinardo Blood 2019

Venetoclax Summary

- Based on promising data from phase 1b-> Venetoclax given accelerated FDA-approval for Tx of newly Dx AML + HMA's
 - >75 years or comorbidities that preclude intensive chemo
- New SOC for elderly AML?
- How do we define fitness for intensive chemo vs. lowintensity strategies?
- 2 ongoing Randomized Phase 3 Trials- Aza + Venetoclax vs. Aza & LDAC + Venetoclax vs. LDAC
 - Primary endpoint = OS
- Unanswered questions- challenging to give in community
 - · Myelosuppression frequent- how to dose in cytopenias?
 - · Drug interactions with CYP3A4 inhibitors
 - Dose ramp-up over 3-5 days

47

Tx Options Post-Venetoclax?

- Despite encouraging response rates-> almost all pts who respond will ultimately relapse
- Median OS = 2.4 months in pts with relapsed/refractory Dz after Aza/Ven¹
- In pts with FLT3, IDH1 or IDH2 mutations, targeted Tx options available- majority do not have a targeted Tx option
- MCL-1- BCL-2 family member- anti-apoptotic peptide upregulated in AML
- MCL-1 appears to be a dominant mechanism of resistance after Ven-> targeting MCL-1 rational Tx approach²⁻³
- UNC lead site on a randomized phase 2 study of Alvocidib (CDK9 inhibitor-> MCL-1 inhibition) +/- low dose cytarabine (LDAC) in pts with relapsed/refractory AML after Venetoclax 1st line Tx

1) Maiti, Blood[ASH Abstract] 2019; 2) Konopleva, Cancer Disc 2016; 3) Ramsey, Cancer Disc

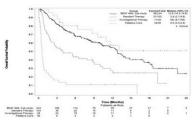
Other Low-Intensity Tx for Newly **Dx Elderly AML**

- Glasdegib- Hedgehog inhibitor + LDAC
 - Randomized phase 2 study- Glasdegib + LDAC vs. LDAC1
 - Median OS = 8.8 months vs. 4.9 months
 - LDAC not useful comparator, not commonly used
- LDAC + Venetoclax
 - Phase 1b study- CR/CRi = 54%, Median OS = 10.1 months²
 - Option for prior HMA-treated secondary AML
 - Randomized phase 3 study ongoing
- Ivosidenib- IDH1 inhibitor
 - N=34 pts, CR+CRh = 42%, Median OS = 12.6 months³
 - How does this compare to HMA + Ven or HMA?
 - Option in prior HMA-treated pts with IDH1 mut

1) Cortes, Leukemia 2018; 2) Wei, J Clin Oncol 2019; 3) Roboz, Blood 2019

49

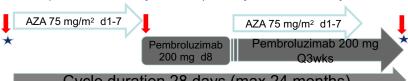
Paradigm Shift?


- Treatment nihilism has existed for elderly AML pts in community
- Multitude of available agents- overall outcomes remain poor
- Low-intensity Tx evolving- shifting to younger pts, combination therapies to improve outcomes
- Biomarker-based approaches critical- which pts predicted to respond versus resistance?
- Genomic sequencing (NGS) critical to inform Tx decisionsfuture strategies will likely be based on full sequencing panels

Clinical Trials

- Despite Tx advances-> clinical trials should be 1st option
 - Improve clinical outcomes- outcomes remain poor and CR not durable
 - Understand which pts benefit from specific Tx
 - Mitigate toxicity and improve QOL
- Beat AML- Multi-institutional precision-medicine based trial
 - >60 years, all pts receive genomic profiling w/in 1 week
 - Multiple Tx arms w/ investigational agents based on genomic profile
 - Enrolling pts at UNC

UNC Burd, Blood [ASH Abstract] 2019



51

Clinical Trials- Azacitidine + Pembrolizumab

 Phase 2 Study of Azacitidine + Pembrolizumab in 1) Relapsed/Refractory AML, 2) Newly Dx AML ≥65 years

Cycle duration 28 days (max 24 months)

- Collaboration with Johns Hopkins (Lead PI: Ivana Gojo)
- Newly Dx AML- CR/CRi = 53% in evaluable pts
- Well tolerated but immune-related AE's can occur
- Immunogenomic biomarkers of response ongoing
- Combination strategies

Gojo, Blood[ASH abstract], 2019

Back to Case

- After cytoreduction and management of TLS-> enrolled on Phase 2 Study of Azacitidine + Pembrolizumab
- Achieved CR after 2 cycles of Tx and has been in CR since 11/2017
- No hospitalizations after 1st being hospitalized at Dx
- Completed 2 years of therapy and now on Aza maintenance
 - Pembro-induced hypothyroidism
- Normal QOL and no limitations- currently 77 years old

53

Conclusions

- AML is a challenging Dz to treat
 - · Heterogeneous with diverse genetic subsets inform Tx decisions
- Elderly AML pts now have many Tx options
 - Should be referred to specialized centers
 - · Targeted Tx approaches will continue to move field forward and lead to improved patient outcomes
- Venetoclax-based Tx-> Paradigm shift in management of elderly AML?
 - Can we predict who will respond best? Who will be resistant?
 - · What to do after Venetoclax?
- Clinical trials are imperative in all facets of Dz

University Cancer Research Fund

HANK YOU!

UNC CANCER NETWORK

UNC Cancer Network Telehealth Team

Tim Poe, Director
Mary King, Operational Coordinator
Veneranda Obure, A/V Support Engineer
Jon Powell, PhD, Continuing Education Specialist

57

COMING LIVE LECTURES

Meeting the Needs of Undocumented Patients with Cancer Julia Rodriguez-O'Donnell, LCSW, OSW-C

12:00 PM

12:00 PM

Cancer Immunotherapy
Toxicities Identification and
Management in North Carolina:
Updates for 2020
Frances Collichio, MD

For a complete listing and details on coming events visit: www.unccn.org/events

SELF-PACED, ONLINE COURSES

Nutrition and the Aging Brain in Cancer Care

Melissa Walter, MPH, RDN, LDN

Medical and Surgical Oncology

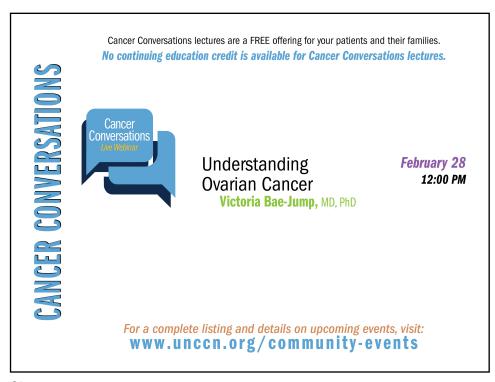
New Indications for Radiotherapy Andrew Wang, MD

Today's lecture will be available in *April 2020* as a *FREE*, Self-Paced, Online Course

For a complete listing and details on coming events visit: www.unccn.org/events

59

SELF-PACED, ONLINE COURSES



The Benefits of Exercise for Cancer Patients

Gabrielle Brennan, MS, ACSM EP-C, CET

Today's lecture will be available in *April 2020* as a *FREE*, Self-Paced, Online Course

For a complete listing and details on coming events visit: www.unccn.org/events

61

HANK YOU FOR PARTICIPATING!

UNC CANCER NETWORK

Email: unccn@unc.edu
Call: 919-445-1000

Send us an email to sign up for our monthly e-newsletter.

Check us out at **unccn.org**

