

Path 17- November 2, 2021

Alina M. Hamilton, MS

Email: alinamh@email.unc.edu

Background Information

Alina M. Hamilton

www.linkedin.com/in/alinamh/

Education

- BS in Biology, Minor in Chemistry University of Texas Pan American, 2015
- MS in Biology University of Texas Rio Grande Valley, 2017
- PhD Candidate, Pathobiology and Translational Science UNC Chapel Hill, Anticipated 2022

Lecture Outline

- Anatomy and Histology of Normal Breast
 - Breast Development
- Benign Breast Disease and Ductal Carcinoma In Situ
- Invasive Breast Cancer
 - Risk Factors
 - Staging and Grading
 - Ductal and Lobular Carcinoma
 - Clinical Breast Cancer Subtypes
 - Molecular Breast Cancer Subtypes
- Breast Cancer Disparities

Normal Breast Anatomy

- The bulk of the breast tissue is adipose tissue interspersed with connective tissue
- Breast ducts comprise only about 10% of the breast mass
 - lobes/TDLUs
 - ducts
 - lymph nodes

S. Ali and R.C. Coombes *Nature Reviews Cancer* 2, 101-112 (2002); doi:10.1038/nrc721

Breast Anatomy- Epithelium

Normal Breast Histology

Terminal Ductal Lobular Unit (TDLU)- Functional unit of the breast

Normal Breast Histology

Breast Development

***Critical Developmental Window/
Window of Susceptibility = high risk!

Benign Breast Disease (BBD) and Ductal Carcinoma *in Situ* (DCIS)

Benign Breast Disease (BBD)

- Benign (non-cancerous) breast conditions are unusual growths or other changes in the breast tissue that are not cancer. However, some can increase risk for breast cancer.
- Grouped into three risk categories:
 - No increase in risk
 - Slight increase in risk
 - Moderate increase in risk
- Symptoms can be similar to those for breast cancer (e.g., lump, pain/tenderness, skin changes, nipple discharge, local inflammation and redness)
- Diagnosis to rule out cancer and assess risk of future cancer
 - Breast physical exam and medical history
 - Imaging tests (e.g., mammography, x-ray, ultrasound, MRI)
 - Nipple discharge analysis
 - Biopsy

Examples of BBD Fibrocystic Change — no increase in risk

Presentation: Lumpiness, thickening and swelling, often associated with the menstrual cycle

Pathogenesis: Hormonal Factors

Macroscopic Features: dense/firm breast tissue and variably sized cysts

Microscopic Features: dilated ducts/cysts, adenosis, fibrosis, apocrine metaplasia, +/- calcifications, +/- ductal hyperplasia

Examples of BBD Fibroadenoma— no to slight increase in risk

Presentation: Usually solitary, firm, rubbery, mobile mass; slowly growing; younger pre-menopausal women

Pathogenesis: Unclear, hormone-related?

Macroscopic Appearance: Firm, circumscribed mass of variable size

Microscopic Appearance: Neoplasm comprised of benign ductal epithelium and benign stromal cells with distinct architectural pattern; very well circumscribed

Risk: no risk, unless the FA is considered "complex" and also includes large cysts (>3cm), adenosis, calcifications, apocrine metaplasia

Ductal Carcinoma *In Situ* (DCIS) An immediate precursor to invasive breast cancer

Presentation: DCIS is usually found on a mammogram and appears as small clusters of calcifications that have irregular shapes and sizes.

- Majority of cases are non-palpable
- >60,000 cases identified each year

Macroscopic Appearance: Usually not evident grossly, but when multifocal, tumors may be palpable and tan in color with visible white/yellow foci of comedo necrosis.

Ductal Carcinoma *In Situ* (DCIS) An immediate precursor to invasive breast cancer

Comedo Pattern

Cribriform Pattern

Type IV Collagen in DCIS

Intact basement membrane!

Ductal Carcinoma *In Situ* (DCIS) Microinvasion and Association with Invasive Ductal Carcinoma

*Red arrows indicate where cancer cells have broken out

D.C. Allred (2010) Ductal carcinoma in situ: Terminology, classification, and natural history. *J. Natl. Cancer Inst. Monographs* **41**:134-138.

Proposed Natural History of Breast Cancer Development

Ductal Carcinoma *In Situ* (DCIS) Treatment

- If first mammogram is suspicious, a second higher resolution imaging may be recommended.
- If further evaluation is needed, an ultrasound-guided core needle biopsy will be performed, and sent for pathology review.
- Treatment options for DCIS include:
 - Breast-conserving surgery (lumpectomy) and radiation
 - Breast-conserving surgery (lumpectomy) and radiation plus adjuvant hormone therapy
 - Breast-removing surgery (mastectomy)
- The main goal of treatment is to *prevent* development of invasive breast cancer.

Invasive Breast Cancer

Male			Female		
Prostate	174,650	20%	Breast	268,600	30%
Lung & bronchus	116,440	13%	Lung & bronchus	111,710	13%
Colon & rectum	78,500	9%	Colon & rectum	67,100	7%
Urinary bladder	61,700	7%	Uterine corpus	61,880	7%
Melanoma of the skin	57,220	7%	Melanoma of the skin	39,260	5%
Kidney & renal pelvis	44,120	5%	Thyroid	37,810	4%
Non-Hodgkin lymphoma	41,090	5%	Non-Hodgkin lymphoma	33,110	4%
Oral cavity & pharynx	38,140	4%	Kidney & renal pelvis	29,700	3%
Leukemia	35,920	4%	Pancreas	26,830	3%
Pancreas	29,940	3%	Leukemia	25,860	3%
All sites	870,970		All sites	891,480	
Male			Female		
Lung & bronchus	76,650	24%	Lung & bronchus	66,020	23%
Prostate	31,620	10%	Breast	41,760	15%
, Colon & rectum	27,640	9%	Colon & rectum	23,380	8%
Pancreas	23,800	7%	Pancreas	21,950	8%
Liver & intrahepatic bile duct	21,600	7%	Ovary	13,980	5%
Leukemia	13,150	4%	Uterine corpus	12,160	4%
Esophagus	13,020	4%	Liver & intrahepatic bile duct	10,180	4%
Urinary bladder	12,870	4%	Leukemia	9,690	3%
Non-Hodgkin lymphoma	11,510	4%	Non-Hodgkin lymphoma	8,460	3%
Brain & other nervous system	9,910	3%	Brain & other nervous system	7,850	3%
			A11 1	005 040	

Estimates are rounded to the nearest 10, and cases exclude basal cell and squamous cell skin cancers and in situ carcinoma except urinary bladder. Estimates do not include Puerto Rico or other US territories. Ranking is based on modeled projections and may differ from the most recent observed data.

©2019, American Cancer Society, Inc., Surveillance Research

Genetic Predisposition to Breast Cancer

TABLE 10.1	Genetic Predisposition to Breast Carcinoma							
Gene	Syndrome	Carcinomas	Other					
BRCA1	Breast Ovarian	Breast, ovary						
BRCA2	Breast Ovarian	Breast, ovary, prostate, pancreas	Fanconi anemia in homozygotes					
TP53	Li-Fraumeni	Breast, brain, soft tissue, bone, etc.						
PTEN	Cowden	Breast, ovary, thyroid, colon	Adenomas of thyroid, fibroids, gastrointestinal polyps					
STKII/LKB1	Peutz-Jegher	Gastrointestinal, breast	Hamartomas of bowel, buccal pigmentation					
ATM	Ataxia-Telangiectasia	Breast	Homozygotes: leukemia, lymphoma, cerebellar ataxia, immune deficiency, and telangiectasia					
ATM	Site-specific breast	Breast	Low penetrance					
MSH2/MLH1	Muir-Torre	Colorectal, breast						

All autosomal dominant.

Adapted from Harris JR, Lippman ME, Morrow M, et al. Diseases of the breast. 4th ed. Philadelphia: Wolters Kluwer-Lippincott Williams and Wilkins, 2010:210.

Breast Cancer Risk Factors

Controllable and Non-Controllable BC Risk Factors

Age	Obesity
Genetics	Drinking Alcohol
Early menarche	Smoking
Late menopause	High Fat Diet
Nulliparity	Lack of Physical Activity
Late age at first pregnancy; not breastfeeding	Radiation Exposure, particularly to the chest
Hormone replacement therapy	Dense Breasts
Race/Ethnicity	Certain Benign Breast Diseases

Invasive Ductal and Lobular Carcinoma of the Breast

S. Ali and R.C. Coombes Nature Reviews Cancer

2, 101-112 (2002); doi:10.1038/nrc721

**An additional ~5% of cases are made up of rare types of breast cancer (e.g., inflammatory, mucinous, medullary, and papillary BC)

https://pathology.jhu.edu/breast/types-of-breast-cancer

Breast Cancer Staging

0

Stage I

The pathologic stage of breast cancer is a measure of how advanced a patient's tumor is.

Staging takes into account:

- Tumor characteristics (T)- DCIS, <2cm, >2 cm - < 5cm, >5 cm in size
- Regional Lymph Node Metastasis (N)- 1-3, 4-9 and >10 axillary lymph node mets
- Distant Metastasis (M)

Breast Cancer Grade

The grade of a breast cancer is a prognostic representation of the "aggressive potential" of the tumor.

Grade 1

Grade 2

Grade 3

Clinical Breast Cancer Subtypes

Estrogen Receptor (ER)

Progesterone Receptor (PR)

Human Epidermal Growth Factor Receptor 2 (HER2)

ER+ Breast Cancer

Distinct, nuclear staining for ER

- Estrogen receptor (ER) is encoded by the ESR1 gene. The hormone estrogen binds to ER to stimulate paracrine and autocrinemediated proliferation pathways to drive breast epithelial cell growth.
- Approximately 70% of breast cancers are ER-positive

Targeted therapy for ER+ Breast Cancer

the ligand binding site of ER

Tamoxifen mimics the structure of estrogen and can occupy the estrogen binding site of ER

Tamoxifen Treatment Improves Outcomes for ER+ Breast Cancer

M.Stendahl *et al.* (2006) High progesterone receptor expression correlates to the effect of adjuvant tamoxifen in premenopausal breast cancer patients. *Clin. Cancer Res.* 12:4614-4618.

HER2+ Breast Cancer

Distinct, strong "chicken-wire" pattern of staining for HER2

- The HER2/neu gene encodes a member of the epidermal growth factor receptor family (ERBB2).
 Overexpression of HER2/neu drives cancer by virtue of hyperstimulation of growth factor receptor signaling pathways.
- Approximately 15-20% of breast cancers are HER2positive.

HER2/Neu Amplification is Associated with Poor Long-term Survival Among Breast Cancer Patients

Breast cancers with amplified *HER2* are prone to relapse in the first 18 months after diagnosis and have poor overall prognosis, indicative of more aggressive disease.

From: Cellular Oncogenes (Chapter 4), pp 91-117. R.A. Weinberg. *The Biology of Cancer*. Garland Science, 2007.

Targeted therapy for HER2+ Breast Cancer

H.J.Burstein, *et al.* (2005) Isolated central nervous system metastases in patients with HER2 overexpressing advanced breast cancer treated with first-line trastuzumab-based therapy. *Annals of Oncology* 16:1772-1777.

Triple Negative Breast Cancer (TNBC)

Triple-negative breast cancer

Standard Treatment Cytotoxic Chemotherapy

There is a pressing need to identify targets for therapy in triple-negative breast cancer to enable molecular and personalized treatment

~10-15% of all BC cases are TNBC

Estrogen receptor-negative *Resistant to Tamoxifen*

HER2-negative *Resistant to Herceptin*

Tumor Infiltrating Lymphocytes Predict Outcomes in Breast Cancer

Immunotherapy for Metastatic Triple Negative Breast Cancer

Addition of this PD-L1 inhibitor to nabpaclitaxel reduced the risk of progression or death by 40% compared with nab-paclitaxel alone!

Currently, checkpoint inhibitors (like atezolizumab and pembrolizumab) are only approved for PDL1+ metastatic TNBC. Only 30% of metastatic TNBC patients in this trial were PDL1+.

Molecular Breast Cancer Subtypes: Can we improve precision medicine in breast cancer?

Grade III, T3 (diameter > 5cm), Estrogen and Progesterone Receptor Positive, HER2 Negative, 3 of 4 Node Positive, all received Tamoxifen

Died after 17 months

Alive for 96 months

www.nature.com

The portrait of a breast cancer

Organic superconductors Piling on the charge

Rice farming Diversity beats disease

Atmospheric CO₂ The boron record

nature jobs focus on chemistry nsight

Microbial infection Nature Insight

NAME	BC/FUMI0	BC/FUMI4	BC/FUMI4	BC601B-A	BC601A-E	BC/FUMI1	BC/FUMI2	BC/FUMI2	BC/FUMI1	BC/FUMI1	BC102B-E	BC/FUMI2	BC/FUMI3	BC/FUMI3	BC/FUMI1	BC/FUMI1
adipose differentiation-related prot	0.242	1.21	-0.253	-0.841	-0.423	-0.363	-0.852	-1.383		-2.642	0.501	-0.25	-0.605	-0.636	0.229	-0.626
plasminogen activator, urokinase r	e 0.908	0.485	-0.397	-0.767	-0.886	-0.251	-0.683	0.057	-0.317	-1.2	0.125	5	-0.536	-0.248		-0.365
plasminogen activator, urokinase r	e 0.4635	0.3545	-0.8975	-1.23	-0.8335	0.0175	-1.002	0.1555	-0.4325	-1.008	-0.1785	5	-0.7445	-0.1485	0.0555	0.2055
coronin actin binding protein 1C	0.551	0 151	-0.422	0.007	-0.638	0.087		-0.689	-0.91	-0.853	0.052	-0 492	-0 201	-0 152	-0.368	-0 741
** contempre protein complex, cubur	1 061	0.9655	0.1225	0.0005	0.2916	0.4055	0.2775	0.1465	1 100	0.000	0.2615	0.0005	0.2201	0.6025	0.0105	0.0245
coatorner protein complex, subur	-1.001	-0.8655	-0.1235	-0.9695	0.3815	-0.4955	-0.2775	-0.1405	-1.109	-0.8635	0.2015	-0.0905	-0.3225	-0.0035	0.0195	-0.9345
coactosin-like protein R78490	-0.8835	-0.4545	0.2375	-1.177	0.2155	-0.2975	-0.9385	-0.2815	-1.494	-0.5985	0.4095	-0.3465	0.2185	-0.1345	-0.2895	-0.5525
folylpolyglutamate synthase R4486	0.686	1.583	1.313	0.048	-0.272	-0.143	-0.394	0.423	-0.445	-0.854	0.322	-0.03	-0.412	0.214	-1.098	-0.175
lysozyme (renal amyloidosis) N639	9 -0.18	1.155	1.575	-1.635	0.355	0.295	-0.805	0.135	-2.145	-0.955	0.575	0.735	-0.435	-0.855	-0.8	-1.705
chemokine (C-C motif) receptor 1	AA036881	0.524	1.233	-1.459	-0.095	-0.122	-0.196	0.101		-0.942	-0.2	-0.133	-0.549	-0.763		-0.059
interferon, gamma-inducible protei	-0.181	-0.062	0.37	0.064	0.418	-0.33	-0.098	-0.289	-1.042	-0.332	0.907	1.056	-0.8	-0.193	-0.789	-1.25
cystatin B (stefin B) H22919	-0 188	-0 489	-0.603	0.074	-0 212	-0 295	-0.54	-0.535	-0 453	-0 479	-0.021	0 291	-0.651	-0.536	-0 401	-0.511
cathensin S AA236164	-0.701	0.100	0.334	-0.316	0.723	-0.46	0.01	-0.452	0.100	-0.413	0.021	1.063	-0.849	-1.088	-0.94	-1 201
emellindusible suteline A2 (mens)	-0.731	0.2055	0.534	-0.310	0.725	1.000	0.33	0.432	1 050	-0.413	0 4255	0.0005	-0.043	- 1.000	-0.34	0 7795
small inducible cytokine A2 (mono	0.2665	0.2955	0.5315	-0.1285	0.4255	-1.099	-0.7265	-0.6035	-1.052	-1.438	0.1355	0.0365	-0.4335	0.0875	-1.218	-0.7785
natural killer cell transcript 4 AA45	8 0.483	0.348	0.575	-0.685	0.971	-0.335	-0.222	-0.116	-1.644	-0.66	-0.322	0.885	-0.08	-0.02	-0.441	-0.51
superoxide dismutase 2, mitochone	c 0.431	0.301	-0.836	0.519		-0.492	-0.834	-0.86		0.781	0.005	-1.163	-1.283	-0.969		-0.586
superoxide dismutase 2, mitochone	drial AA487	0.3185	-0.6835	0.4865	0.6925	-0.7895	-0.6005	-0.5815	0.4995	0.0165	0.3755	-0.1225	-1.129	-1.137		-0.6935
transforming growth factor, beta-in	0.0235	0.6525	-0.3785	-0.5505	-0.3675	-0.4755	-0.1105	0.3435	0.0785	-0.4735	0.7925	1.532	-0.3355	-0.0885	0.2495	-0.1985
glycine dehydrogenase (decarbox	-1.122	-1.412	-1.275	-1.764	-0.611	1.259	-1.25	-0.76	-2.159	-1.72	-1.017	-0.972	-0.715	-0.543	-0.658	-0.818
syndecan 2 (benaran sulfate prote	-1.828	-1.7	-1 409	-1 964	-0.975	1 516	-1 24	-1.75	-2 219	-2 477	-1.08	0.29	-1 641	-2 045	-0.315	-1 356
dutethione S transference pi B2364	1 1 726	1 902	1.400	1.004	0.070	1.510	1 246	2 157	2.213	2.4/1	0.042	0.20	1.041	1.674	0.010	1.600
shitinese 2 like 2 A ACCORD4	-1.720	-1.032	-1.500	0 774	1 400	1.520	-1.340	-2.137	-3.114	-3.140	-0.343	0.230	-1.343	-1.074	-0.410	-1.557
Chiunase 3-like 2 AA000021	0.451	4 0 * *	0.467	-0.771	-1.436	-1.454	-0.013	-1.578	0.312	-0.167	1 000	-0.469	0.129	-0.000	0.010	-0.489
nuclear factor I/B W8/528	0.464	-1.314	-0.187	-1.429	-0.189	0.551	-1.94	-1.372		-2.152	-1.825		-0.441	-0.928	0.316	-1.188
ras homolog gene family, member	-1.382	-0.471	-0.421	0.304	-0.448	-0.805	-0.945	-0.737	-1.222	-0.915	-0.713	-0.167	0.09	1.074		-0.393
ras homolog gene family, member	-1.311	-0.763	-0.61	0.198		-0.764	-0.391	-0.867	-1.469	-1.106	-0.486	-0.778	-0.579	0.812	0.348	-0.222
**zinc finger, DHHC domain conta	ining 5 AA4	-0.965	-0.571	-0.304	-0.328	-0.417	-0.518	-0.473	-0.973	-0.94	-0.926	-1.153	-0.462	-0.683	0.828	0.347
keratin 5 (epidermolvsis bullosa sir	-0.309	-0.485	-0.748	-0.909	-0.403	-0.127	-0.371	-0.778	-1.596	-1.787	-0.782	0.242	-0.559	-0.804	0.79	0.374
keratin 5 (epidermolysis bullosa sir	mplex. Dowl	-0.655	-2.421	0.301	0.689	-0.38	-0.131	-1.647		-1.396	0.248	-1.118	-0.389	-1.423	1.963	-0.068
keratin 17 AA026100		-0.593	-2 294	0 181	-0.45	0.457	-1 132	-0.754		-2 708	-0.641	-0 148	-0.201	0.161	2 264	1 758
tripartite motif containing 20 AAOE	E 0.522	0.000	2.234	0.726	0.40	0.401	1.102	1.0	1 501	1 790	1.076	0.140	1 1 2 2	1.051	2.204	0.24
unpartite mour-containing 29 AA05	4 =0.523	=0.763		-0.720	=0.155	-0.401		-1.0	-1.591	-1.769	-1.070	-0.929	=1.132	-1.051		-0.24
pielomorphic adenoma gene-like 1	AA463204	-0.7035	-0.5595	-0.7765	-0.2835		-0.1885		-1.466	-2.035	-0.1475	-0.7075	-0.4025	-1.054	0.3535	-0.5835
secreted frizzled-related protein 1	AA002080	-1.951	-2.022	-1.982	0.069	-0.117	-1.543	-2.996		-2.657	-0.275	-1.187	-0.262	-0.688	3.135	0.295
Homo sapiens cDNA FLJ11796 fis	s, clone HEN	-1.425		-0.74	-0.798	0.243	-0.225	-0.061		-0.957	-0.001		-0.491	-0.28	0.595	-0.721
ESTs AA074677		-0.411	-0.412	-0.879	-0.78	-0.401	-0.135	-0.508		-2.237	0.077	1	-0.72	-1.057		-1.301
pellino homolog 1 (Drosophila) W8	-0.3805	-1.159	-0.6945	-0.3935	-0.1785	-0.3665	-0.3835	-0.2825	0.1245	0.3185	0.2735	-1.329	-0.9455	-1.313		-0.4235
matrix metalloproteinase 7 (matrilys	s -0.887			-2.32	0.16	-1.65		-1.54		-1.065	1.453	5	-1.55	-2.859		-0.04
moesin R22977	0.452	-0.759	-0.433	-0.691	0.148	-0.538	-0.28	-0.478	-0.477	0.019	0.062	2	-0.001	0.259	-0.24	-0.314
prion protein (p27-30) (Creutzfeld-	-0.8095	-1.302	-0.5695	-1.843	-0.8355	-0.3325	-0.7305	0.2015	-0.3825	-0.2335	-0.4605	-1.181	-0.6875	-0.3315	0.2825	-0.0605
chitinase 3-like 1 (cartilage glycon	rotein-39) A	1 474	1 071	0.678	0.987	-1.357		-2 185		-1 619	3 517	-0.465	-1 549	-1 699	0	-1 262
appevin A8 AA235002		-0.55	1.071	-0.832	0.307	1.007	-0.576	-0.100		-1.015	-0.454	-0.221	0.134	-0.015	0.610	0.519
hypothetical protein EL 120491 N22	0.079	-0.33	1 002	-0.052	0.203	0 159	-0.570	0.704		-1.040	-0.434	1 210	0.134	-0.013	0.013	0.019
ADD sile substine for the line 7 Nor	-0.078	-0.939	- 1.002	0.056	-0.058	-0.158	-1.05	-0.794		-1.012	0.17	1.316	0.404	-0.312		-0.039
ADP-hoosylation factor-like 7 N35	-0.9415	-0.0565	-0.3065	-0.9365	-0.2155	0.0715	-0.2625	-0.5505		-1.107	-0.5655	0.2265	-0.2475	0.1635		-0.1405
cystatin A (stefin A) W72207		-0.532	-0.941	0.909	1.783	0.164	-0.106	-0.577		-1.496	0.588	3.351	-0.73			-0.855
inhibitor of DNA binding 3, domina	u -0.46	-0.587	-0.421	-0.358	0.326		0.638		-0.642		-0.224	-0.143	-0.445	-0.58	0.377	
complement component 1, r subco	0.116		0.475	-1.506	0.089	-0.624	0.876	-1.115		-1.773	-0.505	-0.276	-0.204	-1.308	0.584	-0.431
nicotinamide N-methyltransferase	1 0.675	-0.083	0.035	-0.244	0.053	-0.021	-0.365	-1.174	-1.235	-1.789	-0.688	0.972	-0.261	-0.532	0.606	0
myosin IE AA029956	-0.6075		-0.5465	-0.8195	-0.3755	-0.3535	-0.5545	-0.6505		-1.089	0.0005	-0.0205	0.1535	-0.1775		-0.0005
major histocompatibility complex.	-0.494	-0.582	-1.091	-0.32	0.305	-0.098	-0.085	0.262	-1.668	-1.457	-0.039	-0.362	-0.218	-0.838	-0.197	-0.537
fatty acid binding protein 7, brain V	W72051		-1.595	-2.086	-1.717	-0.387	-2.433	-0.184			-1.441		-0.603	0.446		0.728
kynureningse (L-kynurening bydro	H874	-0 342	=0.591	1 233	0.358	-0.954	-1.687	-1 104	-1 515	-2 201	-0 199	0.075	-0.657	-1.675	-0.58	-1 139
cytochrome P4E0, cubfomily 1 (dia	1 065	-0.570	0.001	-0.767	0.000	-0.304	-0.470	-0.752	-0.404	-0.540	0.165	0.075	-0.605	-0.770	0.400	-0.134
eutochrome F450, Sublamily I (dio	. 1.065	-0.579	0	-0.767	0.392	-0.366	-0.479	-0.752	-0.401	-0.549	0.165	0.11	-0.005	-0.779	0.499	-0.131
cytochrome P450, subtamily I (dio	2.202	-0.047	-0.231	-0.604	-0.234	-0.713	-0.836	-1.99	-1.558	-1.4/4	0.425	0.622	-0.872	-1.706		-0.579
S100 calcium binding protein A8 (q -1.641	0.014	-1.05	4.29	-0.162	-0.899	-1.625	-1.818		-2.268	-1.165	-1.2	-1.797	-1.329		-1.087
signal transducer and activator of t	transcriptior	-0.2855	-0.6135	2.59	-0.0555	-0.4895	-0.3215	-1.224	-1.718	-1.387	-0.4765	-0.7565	-1.143	-0.8755		-0.9545
gamma-aminobutyric acid (GABA)	A receptor	3.044		-1.498	0.076	0.153	-0.766	-0.789		-1.485	-0.69)	-0.823	-0.104		-0.235
EphB6 AA609284			0.6365	-1.062	-0.5295	-0.1345		-0.6565				-0.0415	-0.0885	0.0535		-0.3235
secretory leukocyte protease inhib	-2.088	-1.806	-1.596	0.434	-1.378	-1.269	-0.849	-1.961	-2.645	-3.187	-1.637	•	-0.996	-1.568	0.538	-1.344
aldo-keto reductase family 1 mem	ber C1 (dih	0.83	0.835	-0.435	1.743	1.173	-0.558	-1.21		-1.547		-0.834	0.712	0.104		-0.296
latrophilin W/74533	=1 28	0.216	-0.322	-0.467	-0.563	0 111	0.383	-0.648	-0.95	-1 333	-0.903	0.001	0.469	0.101		0.274
achingdorm migratubulo casacista	- 1.20	0.210	0.1055	0.407	-0.505	0.111	1.05	0.040	-0.95	0 9225	-0.303	0 4945	0.409	0 7125	0 1425	0.214
	(-0.0045	-0.1755	-0.1055	0.1595	-0.2365	-0.5155	-1.05	-0.3695	-0.1395	-0.8335	-0.0443	-0.4845	0.0045	-0.7135	0.1435	-0.2123
epidermai growth factor receptor (erythropiast	-0.676	-1.527	-0.203	-1.07	-1.157	-0.979	-1.085		-2.181	-1.547	-0.782	-0.768			0.432
ERO1-like (S. cerevisiae) AA1868	0.3395	0.4075	-0.6115	-0.3415		-0.4095	-0.8285	-0.4075	-0.4405	-0.4075	-1.335	-0.2325	-0.7075	-0.7125		-0.3035
**hypothetical protein FLJ20624 R	-0.232	-0.341		-0.153	-0.446	0.838	-1.658	0.466	-0.553	-0.909	-0.199	-0.662	-0.334	0.371	-0.029	0.617
forkhead box D1 AA069132	-1.192	-0.07	-0.666	-0.596	0.02	0.388	-0.54	0.11		-1.016	-1.28	-1.077	-0.051	-0.477	-0.561	0.796
met proto-oncogene (hepatocyte g	rowth facto	r receptor)	AA410591	-1.151	-0.373	0.228		0.322		-0.654	-0.23	0.176	0.74	0.446		0.177
ESTs, Weakly similar to TRHY HL	JMAN TRICH	-0.137	-0.378	-0.339	0.263	0.618	0.02	0.518		-1.656	1.242	0.885	0.19	0.389		-0.164
ESTs AA149250				1.847	-0.295	0.293		-0.215		-1.641	-0.868	-0.33	-0.395	0.21		-0.185
Homo sapiens mRNA: cDNA DKE	7n5640236/	3 135	0.0215	0.3145	0 7915	=0.2245	1 3/13	-0.0505		-0 1155	1 125		-0 1125	-0 5255		-0 3445
hypothetical protein EL 110227 AA	1 -0.6325	0.8375	0.2155	-0.7025	-0.1815	-0.3315	-0.4705	-0.6425	-0.6005	-0.4425	0.2225	0.0595	-0.3355	0.3235		0.1205
integral membrane protein C 1 10337 AA	-0.0325	0.03/5	0.2155	-0.7935	-0.1015	-0.3315	-0.4795	-0.0435	-0.6095	-0.4435	0.2225	0.0565	-0.3355	0.23/5	0.110	0.1205
integral memorane protein 3 AA03	-0.998	-0.313	0.52	-1.106	-0.005	-0.618	-0.901	-0.847	-2.533	-2.828	-1.247	-0.647	-1.005	-1.651	-0.119	-0.465

Using hierarchical clustering to decode the mess

cellsUnsupervised clusterellsanalysis of 10,000crophagesgrossly dissectedoroblastshuman tumorsdothelial Cells

Luminal/ER+ genes **HER2** amplicon **Proliferation**

Breast Cancer "Intrinsic" Molecular Subtypes

Similarity between Clinical and Molecular Subtypes

Overlap between Clinical and Molecular Subtypes

Grade III, T3 (diameter > 5cm), Estrogen and Progesterone Receptor Positive, HER2 Negative, 3 of 4 Node Positive, all received Tamoxifen

Died after 17 months

Alive for 96 months

Breast Cancer Cells of Origin?

Prat & Perou, Nature Medicine, 2009

Breast Cancer Gene Expression Assays for Risk and Therapeutic Stratification

Oncotype DX	MammaPrint	Prosigna
 Eligibility Stage I, II, IIIa Invasive or DCIS ER positive HER2 neg Lymph node neg or pos 	 Eligibility Stage I or II Invasive Carcinoma Hormone receptor positive (ER or PR) Lymph node neg HER2 pos or neg Tumor size <= 5cm 	 Eligibility Stage I or II Invasive Carcinoma Hormone receptor positive (ER or PR) Lymph node neg or pos
 21 gene signature 	• 70 gene signature	• 50 gene signature
• Estimates risk of 10 year recurrence with a Recurrence Score of 0-100 and risk categories of Low, Intermediate and High.	 Estimates risk of 10 year recurrence with Low and High risk categories 	 Estimates risk of 10 year recurrence with a Prosigna Score from 0-100 and risk categories of Low, Intermediate or High

Paik et al., NEJM, 2004; van de Vijver et al., NEJM, 2002; Dowsett, JCO 2013

Breast Cancer Disparities

Breast Cancer Incidence and Mortality by Race

United States Cancer Statistics, 2016

Based on November 2018 submission data (1999-2016): U.S. HHS, CDC and NCI, June 2019, NAACCR, 2019 American Cancer Society, Inc., Surveillance Research, 2019

Black Women Are Often Underrepresented In Breast Cancer Clinical Trials

Study	Goal of Study	% Study Population (Black)	Reference
IMpassion130 Trial	Test Atezolizumab+ Nab-Paclitaxal for treatment of PDL1+ TNBC	4.9% - 7.6%	Schmid <i>et al.,</i> NEJM 2018
Oncotype DX Study	Development of OncotypeDX recurrence score	5%	Paik <i>et al.,</i> NEJM 2004
TAILORx Trial	Validation of OncotypeDX recurrence score	7%	Sparano <i>et al.,</i> NEJM 2018
NCI-Sponsored Randomized Phase III Chemotheray Trial	Evaluate association of race and outcomes in anthracycline- and taxane-treated ER+ breast cancer	8%	Sparano <i>et al.,</i> JNCI 2012

22.2% of the North Carolina population and

13.4 % of the United States population is Black

Women <40 and >65 are Underrepresented in Clinical Trials

Table 1. Cases ar	Estimated nd Deaths	d New amon	DCIS and g Women	Invasiv by Ag	ve Breast (e, US, 201	Cancer 9	
	DCIS ca	ases	Invasive	cases	Deaths		
Age	Number	%	Number	%	Number	%	
<40	1,180	2%	11,870	4%	1,070	3%	
40-49	8,130	17%	37,150	14%	3,250	8%	
50-59	12,730	26%	61,560	23%	7,460	18%	
60-69							
70-79	54%	54%		59%		6	
80+							
All ages	48,100		268,600		41,760		

Estimates are rounded to the nearest 10. Percentages may not sum to 100 due to rounding.

©2019, American Cancer Society, Inc., Surveillance Research

Proportion (%) of Patients Accrued by Age						
Age	Accrued					
<40	7-10%					
>65	20-24%					
Freedman, et al., <i>J Clin Oncol</i> , 2016 Freedman & Partridge, <i>Breast</i> , 2013 Partridge and Rosenberg, unpublished						

Younger and Older Women Have Poorer Outcomes

SEER data, 2000-2012; Freedman et al., Cancer 2018

Carolina Breast Cancer Study (CBCS)

- Population based study designed to study racial disparities in breast cancer.
- Enrolled approximately 5300 women with breast cancer from 44 NC counties.
- Black and young women were oversampled, so that these populations would comprise approximately 50% of the final study population.
- Rich in epidemiological, demographic and biological variables.

